Треугольник, образованный биссектрисой, боковой стороной и частью другой боковой стороны (с острым углом праллелограмма при вершине) - равнобедренный. У него равны углы при основании, роль которого играет биссектриса тупого угла. Дело в том, что биссектриса делит тупой угол пополам, и один из этих РАВНЫХ углов является внутренним накрест лежащим углом для угла, который биссектриса образует с противоположной стороной параллелограмма.
Пусть биссектриса делит сторону параллелограмма на части 3*х и 7*х (то есть её длина равна 10*х), где х - неизвестная длина. Тогда другая сторона параллелограмма равна 3*х, и периметр равен 26*х;
26*х = 117 = 13*9; x = 9/2;
Большая сторона параллелограмма равна 10*х, то есть 45.
Средняя линия треугольника - это отрезок, соединяющий середины двух его сторон.
Свойства средней линии:
Средняя линия треугольника, соединяющая середины двух сторон,
1) параллельна третьей стороне и
2) равна ее половине.
Доказательство:
Пусть К - середина АВ и Р - середина ВС треугольника АВС. Тогда КР - средняя линия по определению. Докажем, что КР║АС и КР = 1/2 АС.
На прямой КР за точку Р отложим отрезок РЕ = КР.
РЕ = КР по построению, ВР = РС по условию, ∠ВРК = ∠СРЕ как вертикальные, значит ΔВРК = ΔСРЕ по двум сторонам и углу между ними.
Из равенства треугольников следует:
1) ∠1 = ∠2, а эти углы накрест лежащие при пересечении прямых АВ и СЕ секущей ВС, значит АВ║СЕ;
2) ВК = СЕ, но ВК = АК по условию, значит АК = СЕ.
Итак, в четырехугольнике АКЕС противоположные стороны АК и СЕ равны и параллельны, значит это параллелограмм.
Тогда и КЕ║АС - первое свойство доказано.
КЕ = АС как противоположные стороны параллелограмма, а КЕ = 2КР, тогда
КР = 1/2КЕ = 1/2АС - второе свойство доказано.
А(-2;3) и В(4;0)
(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Ya) или
(X+2)/6=(Y-3)/(-3) => 3x+6y-12=0
Общее уравнение прямой АС имеет вид: Аx+Вy+С=0
В нашем случае уравнение прямой АС имеет коэффициенты:
А=3, В=6 и С=-12.
Из уравнения прямой АВ «снимаем» вектор нормали: n(3;6), который и будет направляющим вектором прямой СD (перпендикуляра к АВ).
Уравнение прямой СD составим по точке С(4;5) и направляющему вектору n(3;6):
(x-4)/3=(y-5)/6 или 6x-3y-9=0 или 2х-y-3=0.
Нам дано, что координаты точки D(x=2y;y).
Решаем систему двух уравнений подстановкой.
Получаем, что точка D(2;1).
Тогда высота |СD|=√[(2-4)²+(1-5)²]=√(4+16)=2√5.
ответ:CD=2√5.