Пирамида ABCDE, ABCD - основание, AED - грань, перпендикулярная плоскости основания. Проведем высоту EK к ребру AD. Она у нас по условию равна 6. Ещё проведем высоту EM к грани BC. Поскольку плоскость AED перпендикулярна плоскости основания, а все остальные грани наклонены к ней под одинаковым углом, то углы EDA=EAD=EMK = 60 градусов, и прямоугольные треугольники AEK, DEK и MEK равны. Из этих треугольников найдем сразу всё, чего нам не хватает: KM = KD = KA = EK/tg(60гр) = 6/√3. Площадь ABCD = KM*(AK+KD) = 2*(6/√3)^2 = 24. Объем пирамиды равен 1/3*24*6 = 48
Пусть точка А имеет координаты А(x1; y1) Т.к. М - середина отрезка АВ, то она будет иметь координаты М((х1 - 7)/2; ((у1 - 5)/2)) Известно, что точка М имеет координаты М(-3; -4). Тогда приравниваем координаты точки М с неизвестными х1 и у1: (х1 - 7)/2 = -3 (у1 - 5)/2 = -4 х1 - 7 = -6 у1 - 5 = -8 х1 = 1 у1 = -3 Тогда точка А будет иметь координаты А(1; -3).
Пусть точка С имеет координаты С(х2; у2) По такому же принципу составлчпм два уравнения: (х2 + 1)/2 = -4 (у2 - 3)/2 = -2 х2 + 1 = -8 у2 - 3 = -4 х2 = -9 у2 = -1 Значит, точка С будет иметь координаты С(-9; -1).
Теперь находим координаты точки L(х3; у3) х3 = (-7 -9)/2. у3 = (-1 - 5)/2 х3 = -8 у3 = -3 Значит, точка L имеет координаты L(-8; -3)
Длина отрезка AL = √(1 + 8)² + (-3 + 3)² = √9² + = √81 = 9.
ДКС=100° тогда ДСК=?
ДСК=180°-100°-35°
ДСК=45°
ДСК=ДСВ
СДВ=2СДК=2×35°=70°
ДВС=180°-СДВ-ДСВ=180°-70°-45°=65°
ответ:ДВС=65°