Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
1. Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. 2. Сумма углов выпуклого n-угольника равна (n-2)x180, где n - число углов данного многоугольника. 3. 180 градусов 4. четырёхугольник с параллельными и равными противоположными сторонами 5. В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO = OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 . 6. Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны 7. Если в трапецию вписана окружность, то сумма оснований равна сумме боковых сторон: a + b = c + d, а средняя линия — полусумме боковых сторон: m = \frac{{c + d}}{2}.
Равнобедренная трапеция — трапеция, у которой боковые стороны равны AB = CD. Тогда равны диагонали AC = BD и углы при основании \angle BAD = \angle CDA, \angle ABC = \angle BCD.
Из всех трапеций только около равнобедренной трапеции можно описать окружность, так как окружность можно описать около четырехугольника, только если сумма противоположных углов равна 180^\circ.
В равнобедренной трапеции расстояние от вершины одного основания, до проекции противоположной вершины на прямую, содержащую это основание равно средней линии.
tg60°=√3
tgA=√3