тебе нужно просто расставить буквы к данной функции.
1. с (применяется правило синуса. противоположный катет к гипотенузе)
2. а (правило косинуса. прилежащий катет к гипотенузе)
3. а (правило синуса)
4. с (правило косинуса)
5. не возможно найти (так как правило противолежащий катет к прилежащему катету, а у нас отношения такого не дано.)
6. в (правило котангенса. прилежащий катет к противолежащему катету )
7.в (правило тангенса. противолежащий катет к прилежащему катету)
8.не возможно найти (так как по правилу прилежащий катет к противолежащему катету, а нам отношение не дано)
вот и все. не забудь построить прямоугольный треугольник и правильно указать буквы.
Площадь поверхности усечённого конуса вычисляется по формуле:
S = п * (r1 + r2) * l + п * r12 + п * r22.
Здесь r1 и r2 — радиусы оснований, l — образующая.
Для начала, вычислим радиусы оснований:
4 * п = 2 * п * r1;
r1 = 2;
10 * п = 2 * п * r2;
r2 = 5.
Теперь опустим высоту из крайней точки меньшего основания на большее. Мы получим прямоугольный треугольник, один из катетов которого равен высоте, а другой — разности радиусов. Найдём его:
5 - 2 = 3.
По теореме Пифагора можно найти образующую:
l = sqrt (9 + 16) = 5.
Тогда площадь полной поверхности усечённого конуса будет равна:
S = п * (2 + 5) * 5 + п * 4 + п * 25 = 64 * п.
ответ: площадь полной поверхности усечённого конуса равна 64 * п
∠BAC = ∠ACD как накрест лежащие углы при AB || CD и секущей AC.
AB = CD, следовательно, ΔABK = ΔCND по гипотенузе и острому углу
У равных треугольников соответствующие элементы (стороны, углы) равны, т.е. BK = DN; CN = AK.
Рассмотрим прямоугольный треугольник BKC: по т. Пифагора
Рассмотрим прямоугольный треугольник ABC: по т. Пифагора
Подставляем теперь в равенство (*), получаем
AB² найдем по теореме Пифагора из прямоугольного треугольника ABK, значит
Все данные у нас есть, осталось решить уравнение
Получили квадратное уравнение, которое можно решить через дискриминант
Следовательно, AC = 2*4 + 5 = 13 см, тогда
Второй решения:
У треугольников ABK и BKC прямые углы равны и ∠ABK = ∠BCK, следовательно, ΔABK ~ ΔBKC, из подобия треугольников следует, что BK/CK = AK/BK
Такое же уравнение как в первом
ответ: 78 см².