М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ВаняиМаша
ВаняиМаша
30.06.2020 01:17 •  Геометрия

Внешний угол правильного многоугольника при одной из его вершин =60 градусов.сколько сторон имеет этот многоугольник?

👇
Ответ:
Величина угла при вершине 180-60=120. 120=(180(n-2))/n;
A*n=180*n-360;
A*n-180*n=-360;
n(A-180)=-360;
n=-360/(120-180);
n=360/60;
n=6. ответ многоугольник имеет 6 сторон
4,7(11 оценок)
Открыть все ответы
Ответ:
olavishneva
olavishneva
30.06.2020

Линия пересечения плоскости  AD₁C₁ и плоскости основания есть ребро параллелепипеда АВ.

Угол между плоскостью AD₁C₁ и плоскостью основания есть угол между плоскостью  AD₁C₁ перпендикуляром к АВ, то есть высотой ромба. На рисунке обозначена как ВН.

ΔСВН - прямоугольный, с прямым углом Н, по условию острый угол ромба-основания равен 60⁰, отсюда, зная sin60⁰ находим высоту ромба ВН:

 

а) sin60^0=\frac{\sqrt3}{2}\\\\sin60^0=\frac{BH}{BC}\\\\BH=BCsin60^0=\frac{a\sqrt3}{2}

Можно было вычислить и так, как мы находили АН во вчерашнем задании, через т. Пифагора, зная, что СН=а/2, как катет, лежащий против угла в 30⁰, но сегодня решаем так, чтобы показать разные пути решения.

 

 б) Высоту параллелепипеда HH₁находим из прямоугольного ΔВН₁Н в котором угол Н прямой, угол В=60⁰, и зная значение tg60⁰:

 

tg60^0=\sqrt3\\\\tg60^0=\frac{HH_1}{BH}\\\\HH_1=\sqrt{3}\cdot BH=\sqrt{3}\cdot\frac{a\sqrt3}{2}=1,5a

 

в) Найти площадь боковой поверхности - самая простая часть этого задания:

S_6_o_k=Ph, где P и h - периметр основания и высота пераллелепипеда соответственно.

S_6_o_k=4a\cdot1,5a=6a^2

 

 

г) S=S_6_o_k+2S_O_C_H=6a^2+2a\cdot\frac{a\sqrt{3}}{2}=6a^2+a^2\sqrt{3}=a^2(6+\sqrt{3})

4,8(47 оценок)
Ответ:
вгььсь
вгььсь
30.06.2020

Объяснение:

1) Так как искомый центр гомотетии лежит на одной прямой с точками Х и X', то для нахождения центра проведем прямую XX'.

Условия заданий приводятся в учебных целях и в необходимом объеме — как иллюстративный материал. Имя автора и название цитируемого издания указаны на титульном листе данной книги. (Ст. 19 п. 2 Закона РФ об авторском праве и смежных правах от 9 июня 1993 г.)

2) Так как N = 2, то по определению гомотетии ОХ' = 20Х, где О — центр гомотетии, значит, отложим от точки X' отрезок ОХ' = 2ОХ и получим искомую точку О.

4,5(21 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ