М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
KarinaKrasko
KarinaKrasko
01.02.2021 00:10 •  Геометрия

Ортогональной проекцией треугольника авс есть прямоугольный ровнобедренный треугольник а1в1с1 гипотенуза которого равна 16 см.площадь треугольникаавс равна 128см^2.найти угол между площадями авс и а1в1с1

👇
Ответ:
макс10710
макс10710
01.02.2021
Теорема о площади проекции. ..
Ортогональной проекцией треугольника авс есть прямоугольный ровнобедренный треугольник а1в1с1 гипоте
Ортогональной проекцией треугольника авс есть прямоугольный ровнобедренный треугольник а1в1с1 гипоте
Ортогональной проекцией треугольника авс есть прямоугольный ровнобедренный треугольник а1в1с1 гипоте
Ортогональной проекцией треугольника авс есть прямоугольный ровнобедренный треугольник а1в1с1 гипоте
4,5(56 оценок)
Открыть все ответы
Ответ:
Papyas3
Papyas3
01.02.2021
1. По т. Пифагора найдем гипотенузу треугольника:
ВС=√(36+64)=10.
По свойству высоты прямоугольного треугольника, проведенной из прямого угла: СК/АС=АС/ВС (каждый катет есть средняя пропорциональная величина между всей гипотенузой и проекцией данного катета на гипотенузу)⇒СК=АС²/ВС=64/10=6,4.ВК=ВС-СК=10-6,4=3,6. АК из ΔАКС:
АК=√(АС²-КС²)=√(64-40,96)=4,8.
2. Примем единичный отрезок длины стороны треугольника за х см, тогда гипотенуза АВ=13*х, катет АС=5х. Используя теорему Пифагора, составим выражение для нахождения второго катета СВ, величина которого 120мм=12см:(12)²=(13х)²-(5х)²⇒169х²-25х²=144⇒144х²=144⇒х=1см, значит гипотенуза АВ=13*1=13см, катет АС=5*1=5см. ΔАСD подобен ΔАСВ по двум углам, так как ∠А-общий, ∠ACB=∠ADC, отсюда AD/AC = AC/AB (каждый катет есть средняя пропорциональная величина между всей гипотенузой и проекцией данного катета на гипотенузу).. Отсюда  AD=АС²/АВ AD=25/13=1 12/13≈1,92см, DB=AB-AD=13-1,92=11,08см..
Прикреплены 2 рисунка.
1. в прямоугольном треугольнике катеты равны 6 и 8. найдите: гипотенузу, высоту, проведенную к гипот
1. в прямоугольном треугольнике катеты равны 6 и 8. найдите: гипотенузу, высоту, проведенную к гипот
4,5(87 оценок)
Ответ:
А) Доказательство

По условию задачи медиана AM треугольника ACS пересекает высоту
конуса, значит медиана АМ и высота конуса ∈ плоскости Δ ACS.

Учитывая, что SC и SA образующие конуса, то SC = SA, значит Δ ACS - равнобедренный. 

Т.к. N - середина АС, тогда SN - высота конуса и высота Δ ACS. ⇒ SN ⊥ AC и  АС - диаметр основания конуса.

По условию AB = BC  ⇒  ΔАВС - равнобедренный,
тогда BN - высота  ⇒   BN ⊥ AC  и  BN ⊥ AN

Учитывая, что SN ⊥ BN, AS - наклонная, AN - проекция наклонной (AN ⊥ BN), то по теореме о трех перпендикулярах AS ⊥ BN, а значит BN ⊥ MN, так как MN || AS (MN - средняя линия).

Что и требовалось доказать.

б) Найдите угол между прямыми AM и SB, если AS = 2 \ , \ AC = \sqrt{6} 

Решение.

Построим прямую МЕ || SB. Прямые AM и SB скрещиваются, поэтому угол между ними, будет равен углу между прямой АМ и МЕ.

Угол АМЕ найдем из ΔАЕМ, для это найдем его стороны.

ΔАВС - равнобедренный (по условию AB = BC) и прямоугольный. ∠ ВАС = 90° т.к. это угол опирается на диаметр окружности), тогда
AC^2 = 2AB^2 \ \ \ \Rightarrow \ \ \ AB=BC = \sqrt{\frac{ \sqrt{6}^2 }{2}} = \sqrt{3}
AE - медиана, то по формуле медианы треугольника найдем

AE = \frac{1}{2} \sqrt{2AB^2 + 2AC^2 - BC^2} = \\ \\ = \frac{1}{2} \sqrt{2* (\sqrt{3})^2 + 2*(\sqrt{6})^2-(\sqrt{3})^2}= \frac{ \sqrt{15}}{2}

Рассмотрим ΔASC. AМ - медиана, то по формуле медианы треугольника найдем

AM = \frac{1}{2} \sqrt{2AS^2 + 2AC^2 - SC^2} = \frac{1}{2} \sqrt{2*2^2 + 2*(\sqrt{6}) ^2 - 2^2} = 2

Рассмотрим ΔSBC. Где AS = SB = 2, ME - средняя линия ΔSBC, тогда 
МЕ = SB / 2 = 2 / 2 = 1

Тогда по теореме косинусов из ΔAME найдем ∠AME = α
AE^2 = AM^2 + ME^2 - 2 *AM*ME*cos \alpha

Отсюда
2 *AM*ME*cos \alpha = AM^2 + ME^2 - AE^2 \\ \\ 2 *2*1*cos \alpha = 2^2 + 1^2-( \frac{ \sqrt{15}}{2})^2 \\ \\ cos \alpha = (5- \frac{ 15}{4})* \frac{1}{4} = \frac{ 5}{4}* \frac{1}{4}= \frac{5}{16}

\alpha = arcos \frac{5}{16}

ответ: 
arcos \frac{5}{16}

На окружности основания конуса с вершиной s отмечены точки a, b и c так, что ab = bc . медиана am тр
4,6(87 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ