Биссектриса угла a треугольника abc (∠c=90°) делит катет bc на отрезки длиной 6 см и 10 см. найдите радиус окружности, проходящей через точки a, c и точку пересечения данной биссектрисы с катетом bc
Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы. Следовательно АР - диаметр. Биссектриса делит противоположную сторону в отношении, равном отношению прилежащих сторон. То есть АС/СВ=6/10 или АС/СВ=3/5. Тогда можно сказать, что АВ=3х, а АВ=5х. По Пифагору АВ²=АС²+СВ² или 25х²=9х²+16². Отсюда 16х²=16², а х=4. Итак, АС=3*4=12 см. По пифагору АР=√(144+36) = 6√5. Это диаметр искомой описанной окружности. ответ: радиус равен 3√5.
Т.к. боковые ребра пирамиды равны, то и их проекции на основание тоже равны, следовательно, основание высоты пирамиды будет центр описанной около прямоугольного треугольника окружности)) известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы. в основании египетский треугольник, т.е. гипотенуза =10 высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10) h² = 13² - 5² = (13-5)(13+5) = 8*18 h = 4*3 = 12
1) У равнобедренного треугольника есть ось симметрии. 3) Площадь трапеции равна произведению средней линии на высоту. 2) Любой квадрат можно вписать в окружность. 3) Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна 180°,то эти прямые параллельны. 1) Вокруг любого треугольника можно описать окружность. 3) Если в ромбе один из углов равен 90°, то такой ромб -.квадрат. 1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Существует параллелограмм, который не является прямоугольником. 3) Сумма углов тупоугольного треугольника равна 180°.
Следовательно АР - диаметр.
Биссектриса делит противоположную сторону в отношении, равном отношению прилежащих сторон. То есть АС/СВ=6/10 или АС/СВ=3/5. Тогда можно сказать, что АВ=3х, а АВ=5х.
По Пифагору АВ²=АС²+СВ² или 25х²=9х²+16².
Отсюда 16х²=16², а х=4.
Итак, АС=3*4=12 см. По пифагору АР=√(144+36) = 6√5.
Это диаметр искомой описанной окружности.
ответ: радиус равен 3√5.