Втреугольнике abc высота ch, равная 5, и медиана bm, равная 4, пересекаются в точке k. расстояние от точки k до стороны ab равно 1. найдите сторону bc.
По теореме Менелая. В треугольнике АСН с секущей МВ имеем: (АМ/МС)*(СК/КН)*(НВ/ВА)=1. Отсюда 1*(4/1)*(НВ/ВА)=1. НВ/ВА=1/4. В треугольнике АВМ с секущей НС имеем: (АН/НВ)*(ВК/КМ)*(МС/СА)=1. Учитывая, что (НВ/ВА)=1/4, имеем АН/НВ=3/1. Отсюда (3/1)*(ВК/КМ)*(1/2)=1. ВК/КМ=2/3. Но ВМ=4, значит ВК=4*(2/5)=8/5. Тогда из прямоугольного треугольника НВК по Пифагору ВН=√(ВК²-КН²) или ВН=√(64/25-1)=√(39/25), а ВС из треугольника СНВ ВС=√(ВН²+НС²) или ВС=√(39/25+25)=√664/5=2√166/5. ответ: ВС=0,4√166 ≈ 5,2.
Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно этой диагонали. [1]Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно плоскости большего основания. [2]Правильная четырехугольная усеченная пирамида разделена на три части двумя плоскостями, проведенными через две противоположные стороны меньшего основания перпендикулярно к плоскости большего основания. Определить объем каждой части, если в усеченной пирамиде высота равна 4 см, а стороны оснований 2 см и 5 см Сделать чертеж. [3]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. [4]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к ней. [5]Правильная четырехугольная усеченная пирамида срезана с двух противоположных боков двумя плоскостями, проведенными через концы диагонали верхнего основания перпендикулярно к этой диагонали. [6]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. [7]Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. [8]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения. [9]Из правильной четырехугольной усеченной пирамиды вырезана часть ее в виде двух пирамид, имеющих общую вершину в точке пересечения ее диагоналей, а основаниями - ее основания. [10]Высота правильной четырехугольной усеченной пирамиды равна 7 см. Стороны оснований 10 см и 2 см. Определить боковое ребро пирамиды. [11]Высота правильной четырехугольной усеченной пирамиды равна 4 см, диагональ 5 см. Найти площадь диагонального сечения, перпендикулярного к основанию. [12]Высота правильной четырехугольной усеченной пирамиды равна Я, боковое ребро и диагональ пирамиды наклонены к плоскости ее основания под углами и и р Найти ее боковую поверхность. [13]Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований равны 10 и 2 см. Найдите боковое ребро пирамиды. [14]Высота правильной четырехугольной усеченной пирамиды равна 7 см, а стороны оснований 10 см и 2 см. Найти боковое ребро пирамиды. [15]
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
В треугольнике АСН с секущей МВ имеем:
(АМ/МС)*(СК/КН)*(НВ/ВА)=1. Отсюда
1*(4/1)*(НВ/ВА)=1. НВ/ВА=1/4.
В треугольнике АВМ с секущей НС имеем:
(АН/НВ)*(ВК/КМ)*(МС/СА)=1.
Учитывая, что (НВ/ВА)=1/4, имеем АН/НВ=3/1.
Отсюда (3/1)*(ВК/КМ)*(1/2)=1.
ВК/КМ=2/3. Но ВМ=4, значит ВК=4*(2/5)=8/5.
Тогда из прямоугольного треугольника НВК
по Пифагору ВН=√(ВК²-КН²) или
ВН=√(64/25-1)=√(39/25), а ВС из треугольника СНВ
ВС=√(ВН²+НС²) или ВС=√(39/25+25)=√664/5=2√166/5.
ответ: ВС=0,4√166 ≈ 5,2.