6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Обозначим углы ВАI и САI как α, а углы АВI и СВI как β.
Вписанные углы YAС и YBС равны α т.к. опираются на одну дугу.
∠BIY - внешний треугольника АВI, значит ∠BIY=∠ВAI+∠АВI=α+β.
В треугольнике ВYI ∠YВI=∠BIY=α+β, значит он равнобедренный. YB=YI.
∠ВYX=∠AYX так как они опираются на равные дуги ВХ и АХ, значит YX - биссектриса равнобедренного тр-ка ВYI, значит YX⊥BI и BO=OI.
Треугольники КВО и LBO равны так как ВО - общая сторона и прилежащие к ней углы β и 90° равны, значит КО=ОL.
В четырёхугольнике ВKIL диагонали пересекаются под прямым углом и точкой пересечения делятся пополам, значит ВKIL - ромб.
Доказано.