Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Для начало нам нужно посчитать периметр известного нам многоугольника, это 4+5+7+8+9=33 см. Два многоугольника подобны, если их соответственные углы равны, а соответственные стороны пропорциональны. Чтобы узнать стороны подобного многоугольника нужно: 1)Периметр подобного многоугольника(99 см) разделить на периметр известного многоугольника(мы посчитали, что это 33 см), то есть 99/33=3, а это означает, что периметр подобного многоугольника в три раза больше, чем периметр первоначального. 2)Поскольку периметр подобного многоугольника в три раза больше, чем периметр первоначального, значит, стороны подобного тоже в три раза больше: 4:5:7:8:9(нужно всё умножить на три)=12:15:21:24:27 ответ: стороны подобного многоугольника относятся как 12:15:21:24:27
Сумма углов треугольника равна 180°