Две прямые, пересекаясь, образуют две пары вертикальных углов. Любая точка биссектрисы угла равноудалена от сторон этого угла, значит геометрическим местом точек М, равноудалённых от прямых р и q, будут биссектрисы всех углов, образованных при пересечении этих прямых. Биссектрисы вертикальных углов лежат на одной прямой, биссектрисы смежных углов перпендикулярны, значит все точки М лежат на двух взаимно перпендикулярных прямых, совпадающих с вышеназванными биссектрисами.
Задача 1 в прямоугольнике противоположные стороны равны и все углы = 90 градусов. если ВЕ - биссектриса то уголы при биссектрисе = по 45 градусов.если рассмотреть треугольнык созданный при биссектрисы то получается что углы равны 90, 45, и 45 (90-45), значит этот треугольник равнобедреный , поэтому стороны треугольника будут равны по 17 см . если АЕ=ЕД, то =38 38+39=76 17+17=34 34+76=110 ответ периметр 110 см
Задача 2
если треугольник АВД - прямоугольный а один из углов = 60 градусов то другой = 30 градусов.по теореме сторона лежащая напротив угла = 30 градусов равна полоаине гипотинузы если катет АВ = 12 см то ВД= 24 см в прямоугольнике диагонали = АС = 24 см.
Задача 3 В прямоугольнике диагонали равны и если диагонали разделить на пополам они все будут равны из этого следует что треугольник ВАО - равнобедренный в равнобедренном треугольнике углы при основании равны поэтому угол ОВА или ОАВ =(180-40)/2=70 градусов
Боковую поверхность данной пирамиды составляют 6 равнобедренных треугольника с основанием 16 и стороной 17. Найдем площадь одного треугольника. S = 1/2bh, где b основание, а h высота. Высоту находим по теореме Пифагора. Высота равна корень квадратный из разницы квадратов стороны треугольника и половины основания. Половина основания 16 / 2 = 8 17*17 - 8*8 = 225. Корень из 225 равен 15. Высота треугольника равна 15. Тогда площадь треугольника будет равна S = 1/2*16*15 = 120 А площадь боковой поверхности этой пирамиды равна площадь одного треугольника умножить на 6. S1 = 120 * 6 = 720
Любая точка биссектрисы угла равноудалена от сторон этого угла, значит геометрическим местом точек М, равноудалённых от прямых р и q, будут биссектрисы всех углов, образованных при пересечении этих прямых.
Биссектрисы вертикальных углов лежат на одной прямой, биссектрисы смежных углов перпендикулярны, значит все точки М лежат на двух взаимно перпендикулярных прямых, совпадающих с вышеназванными биссектрисами.