Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
1. Формула для вычисления объема усеченной пирамиды:
V=(1/3)*h*(S1+S2+√(S1*S2)), где h - высота этой пирамиды, а S1 и S2 - площади ее оснований.
В нашем случае пирамида правильная, следовательно ее основания - квадраты. Диагонали этих квадратов даны 4√2см и 2√2см. Значит стороны квадратов равны соответственно 4см и 2см., а их площади равны 16 см² и 4 см².
Тогда V=(1/3)*6*(16+4+√(16*4)) = 2*28 = 56см³.
2. Определение: "Коэффициент подобия - это отношение расстояний между любыми двумя соответствующими парами точек при преобразовании подобия". Следовательно, это число равно отношению любых двух соответствующих линейных размеров подобных тел. У подобных пирамид основания подобны и их отношение равно квадрату коэффициента подобия. В нашем случае коэффициент подобия данных нам пирамид равен k=√(S1/S2). Или k=√(20/45)=√(4/9) = 2/3.
Тогда отношение объемов этих пирамид равно k³ или
V1/V2 = 8/27.