Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
Уравнение прямой АВ: (х+1)/(3+1) = у(-3)/(8-2),
АВ: 6х + 6 = 4у - 8.
Получаем уравнение прямой АВ с коэффициентом:
у = (6х + 14)/4 = (3/2)х + (7/2).
Находим координаты точки Д - середины отрезка АВ:
Д(-1+3)/2=1; (2+8)/2=5) = (1; 5).
Уравнение перпендикуляра ДС, проведенного из середины отрезка АВ, имеет коэффициент перед х, равный (-1/к), где к - это коэффициент прямой АВ.
ДС: у = (-2/3)х + в.
Для определения параметра в подставим известные координаты точки Д:
5 = (-2/3)*1 + в.
Отсюда в = 5 + (2/3) = 17/3.
Уравнение ДС: у = (-2/3)х + (17/3).
Абсцисса точки С определится при подстановке в уравнение прямой ДС у = 0.
0 = (-2/3)х + (17/3), отсюда х = (17/3)/(2/3) = 17/2 = 8,5.