М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
20yanushkevich04
20yanushkevich04
17.07.2020 01:39 •  Геометрия

Основания abc и a1b1c1 призмы abca1b1c1— равносторонние треугольники. отрезок, соединяющий центр o основания abc с серединой ребра a1b1, перпендикулярен основаниям призмы. 
найдите угол между прямой bc и плоскостью abc1, если высота призмы равна стороне основания.

👇
Ответ:
Маря04
Маря04
17.07.2020

∠CBD = arcsin(3√7/14) ≈ arcsin(0,567) => ∠CBD ≈ 34,6°.

Объяснение:

Высота призмы - отрезок ОН1 по условию (так как он перпендикулярен основаниям). =>

АВ=ВС=АС=ОН1.

Основания призмы - правильные треугольники. Следовательно, центр основания АВС - точка О лежит на пересечении высот(медиан, биссектрис) этого треугольника.

Проведем высоту СН основания и опустим перпендикуляр С1Р на плоскость, содержащую основание АВС. Точка Р принадлежит продолжению прямой НС, так как РН - проекция С1Н на плоскость, содержащую основание АВС.

Прямоугольные треугольники ОН1Н и РС1С равны по катету С1Р=Н1О и гипотенузе С1С = Н1Н.

=> PC = OH = (1/3)*СН (так как СН - медиана и делится в отношении 2:1, считая от вершины).

СН = (√3/2)*а, где а - сторона треугольника. Пусть сторона основания равна 1. Тогда

СН = √3/2, а РН = РС+СН = (1/3)*(√3/2)+√3/2 = 2√3/3.

В прямоугольном треугольнике РС1Н по Пифагору

С1Н = √(С1Р²+РН²) = √(1+12/9) = √21/3.

Прямоугольные треугольники ∆СDН ~ ∆C1PH по острому углу С1НР.

Из подобия: СD/C1P = CH/C1H  =>  CD = CH*C1P/C1H  =>

CD = (√3/2)*1/(√21/3) = 3√7/14.

Sin(∠CBD) = CD/CB = 3√7/14.

∠CBD = arcsin(3√7/14) ≈ arcsin(0,567) => ∠CBD ≈ 34,6°.


Основания abc и a1b1c1 призмы abca1b1c1— равносторонние треугольники. отрезок, соединяющий центр o о
4,4(15 оценок)
Открыть все ответы
Ответ:
danila1311
danila1311
17.07.2020
Решение в приложенном рисунке.
Вектора.
СУММА. Начало второго вектора совмещается с концом первого, начало третьего — с концом второго и так далее, сумма же n векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом n-го (то есть изображается направленным отрезком, замыкающим ломаную).
РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).

Начертите неколлинеарные векторы a,b,c. постройте векторы a+c, c-b
4,4(66 оценок)
Ответ:
KOMAPyKOTA
KOMAPyKOTA
17.07.2020
1) найдём длины сторон. M(-6;1); N(2;4); (MN)^2=(2*(-6))^2+(4-1)^2; (MN)^2=64+9; MN=√73; M(-6;1); K(2;-2); (MK)^2=(2-(-6))^2+(-2-1)^2; (MK)^2=64+9; MK=√73; N(2;4); K(2;-2); (NK)^2=(2-2)^2+(-2-4)^2; (NK)^2=0+36; NK=√36=6; Так как MN=MK=√73, то треугольник MNK - равнобедренный. 2) Опустим высоту МС на сторону NK. Так как треугольник равнобедренный, то МС является и медианой. Точка С - это середина отрезка NK: N(2;4); K(2;-2); Найдём координаты точки С: С{(2+2)/2; (4+(-2))/2}=С(2; 1); Найдём длину высоты МС: М(-6; 1); С(2;1); (МС)^2=(2-(-6))^2+(1-1)^2; (МС)^2=64+0; МС=√64=8; ответ: 8 Мы использовали то, что высота была опущена на основание равнобедренного треугольника. А в общем случае, зная длины трёх сторон нужно найти площадь треугольника. А потом, зная площадь треугольника и длину стороны, на которую проведена высота, находим высоту.
4,6(57 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ