В ΔMPH углы 30°, 39° и 111°. Треугольник тупоугольный, значит , высоты пересекаются вне этого треугольника. Смотрим 4-х-угольник АРHО. В нём ∠ А = ∠В = 90°, ∠АРВ = 111° ( вертикальный с ∠МРH) В выпуклом 4-х-угольнике сумма углов = 360° ∠АРВ = 360° -(90° + 90° + 111°) =69°
Обозначим трапецию АВСД, с большим основанием АД. Тогда опустим из угла С высоту СК к этому основанию. Получим треугольник СКД. Это равнобедренный треугольник,т.к угол СКД 90 градусов, а СДК 45(соответственно, другой угол тоже 45) Сторона СК=АВ=9см (т.к получается,что это стороны прямоугольника АВСК. Соответственно, сторона КД=СК=9см(тк треугольник равнобедренный). Сторона АД=23 см, а КД=9 см, тогда найдем длину АК: 23-9=14 см. Вернемся к прямоугольнику АВСК, в котором ВС=АК=14см. При этом, сторона ВС является меньшим основанием трапеции.
Нарисуем трапецию АВСД. Проведем линию КМ, соединяющую середины оснований. ВК=КС=6:2=3 АМ=МД=11:2=5,5 Опустим высоту КН, для того, чтобы из треугольника КНМ найти затем КМ. Проведем КЕ параллельно АВ и КТ параллельно СД. АЕ=ВК=ТД=КС=3 КЕ=ВА=3 КТ=СД=4 ЕТ=АД-АЕ-ТД=11-3-3=5 Получен треугольник КЕТ со сторонами 3,4,5. Найдем площадь треугольника КЕТ по форуле Герона. Вычисления приводить не буду, не в них смысл данного решения. S КЕТ=6 Высоту КН треугольника КЕТ найдем из площади треугольника . S(КЕТ)=ЕТ*КН:2 КН=2S:ЕТ=12:5=2,4 По т. Пифагора из прямоугольного треугольника КНТ найдем НТ. НТ равна 3,2 ( опять же не привожу вычисления - можно проверить). НМ=НД-МД МД=5,5 по условию. НД=ТД+НТ=3+3,2=6,2 НМ=6,2-5,5=0,7 КМ найдем по т. Пифагора: КМ²=КН²+МН²=2,4²+0,7²=6,25 КМ=√6,25=2,5 см
∠АРВ = 360° -(90° + 90° + 111°) =69°