Прямая, параллельная стороне ac треугольника abc, пересекает его сторону ab в точке m, а сторону bc- в точке k. найдите площадь треугольника abc, если bm=3 см, am=4 см, а площадь четырёхугольника amkc равна 80 кв. см
Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
Это просто: смотри: сначала найди градусную меру угла 9-ти угольника (360:9=40) теперь проведи из центра этого девятиугольника отрезки, соединяющинся с вершинами углов. По условию твой многоугольник правильный, значит все треугольники, которые ты получишь будут равнобедренными. Рассмотри один из них, тебе известно основание и угол. (40:2=20 - это градусная мера угла при основании). В р/б треугольнике высота=медиана=биссектрисса. Теперь рассмотри получившийся прямоугольный тругольник: воспользуйся формулой косинуса: получится, что гиппотенуза этого треугольника - и есть радиус многоугольника. Радиус = cos20•половину основания многоугольника
Т.к. MK ||AC, то ∠BMK = ∠BAC - как соответственные.
∠B - общий.
Значит, ∆MBK ~ ∆ABC - по I признаку.
Из подобия треугольников => MB/AB = k, SMBK/SABC = k²
k = 3/7
SMBK/(SMBK + 80) = 9/49
49SMBK =9SMBK + 720
40SMBK = 720
SMBK = 18 см².
SABC = SMBK + SAMKC = 18 см² + 80 см² = 98 см²
ответ: 98 см².