Проверка: Пусть х - длина ребра куба. Известно, что Sпов.1=6×х^2. Если ребро увеличить в 4 раза, то Sпов.2=6×(4x)^2 Допустим, что изначальная длина ребра - 1 см. Значит Sпов.1=6×1^2=6(см^2) Тогда после увеличения в 4 раза длина ребра стала 1×4=4 см. Значит Sпов.2=6×(4)^2=96(см^2) Sпов.2÷Sпов.1=96÷6=16(раз) ответ: в 16 раз.
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
S=a^2
4×4=16
Проверка:
Пусть х - длина ребра куба. Известно, что Sпов.1=6×х^2. Если ребро увеличить в 4 раза, то Sпов.2=6×(4x)^2
Допустим, что изначальная длина ребра - 1 см. Значит Sпов.1=6×1^2=6(см^2)
Тогда после увеличения в 4 раза длина ребра стала 1×4=4 см. Значит Sпов.2=6×(4)^2=96(см^2)
Sпов.2÷Sпов.1=96÷6=16(раз)
ответ: в 16 раз.