СD=x
AD=y
Поскольку четырёхугольник описан вокруг окружности,то суммы его противолежащих сторон равны
х+9 = у+10
x-y =1
Соединим вершины с центром окружности. Будет четыре треугольника.
Площадь каждого-произведение половины стороны на радиус окружности.в точке касания радиус перпендикулярен стороне и выполняет роль высоты в этом треугольнике
Сумма площадей всех треугольников = площади четырёхугольника
(AB r+BC r+CD r+AD r) / 2 = 90
AB + BC + CD + AD = 36
x + y = 17 и из самого начала уравнение
x-y =1
2x = 18 =>CD = 9
2y = 16 =>AD = 8
Биссектриса правильного треугольника является и высотой и медианой этого треугольника.
Центр вписанного треугольника находится в точке пересечении биссектрис. Эта точка является и точкой пересечения медиан.
Медианы этой точкой делятся в отношении 2:1, считая от вершины .
И теперь самое интересное.
Радиус вписанной окружности в правильный треугольник равен 1/3 ее высоты ( медианы, биссектрисы)
Радиус вписанной окружности этого треугольника равен
r=24*3=8 cм
Центр описанной окружности находится в точке пересечения срединных перпендикуляров.
Срединные перпендикуляры - и высоты, и биссектрисы, и медианы.
Радиус описанной вокруг правильного треугольника окружности равен 2/3 ее высоты.
R= 24*3*2=16 cм
Сумма углов треугольника Х+2Х+Х-20°=180°.
4Х=200°, Х=50°.
ответ: <A=50°, <B=100°, <C=30°.