1)Треугольник МNK- равнобедренный.
Значит, углы при его основании равны => <NMK=<NKM=60°.
2)NP- медиана равнобедренного треугольника MNK, а значит, является одновременно биссектрисой и высотой. =>
3)Биссектриса NP делит угол N пополам. Поскольку угол N=60° (Сумма углов треугольника равна 180° => N = Треугольник MNK-M-K =180°-60°-60° = 60°), то <PNM= <PNK=30°.
4) NP - высота, а значит <NPM= <NPK=90°
Из этого следует, что треугольник NPK= <NPK+<PNK+<NKP= 90°+60°+30°
Если две хорды окружности АВ и CD пересекаются в точке Е, то произведение отрезков одной хорды равно произведению отрезков другой хорды:
АЕ•ВЕ=СЕ•ED.
Длина отрезков, на которые в точке пересечения делится CD, не указана, но дано их отношение CE : DE = 2:4
Примем коэффициент отношения CE : DE равным k.
Тогда 5•25=2k•4k
125=8k²
√125=√8a²
5√5=2a√2⇒
Тогда СЕ=2•1,25•√10=2,5√10
ED=4•1,25√10=5√10
CD=5√10+2,5√10=7,5√10