a) (x-2)²+(y-1)²=25
b) (x+4)²+(y-9)²=4
c) x²+(y+2)²=4
Объяснение:
a) Общая формула окружности
(x-a)² + (y-b)² =R² (1), где a и b соответственно абсцисса и ордината центра окружности, а R - радиус окружности.
Очевидно, что центр окружности О находится точно в середине отрезка АВ. Найдем координаты О.
=((Ха+Xb)/2 ; (Ya+Yb)/2) = ( (-1+5)/2; ((-3)+5)/2)= (2;1)
Очевидно , что радиус окружности равен половине длины отрезка АВ, так как АВ в данном случае является диаметром окружности.
Найдем АВ = sqrt ( (Xb-Xa)² + (Yb-Ya)²) = sqrt ((5-(-1))²+ (-3-5)²)=
sqrt(36+64)=10
=> R=AB/2=10/2=5
Подставляем найденные координаты точки О и значение радиуса R=5
в уравнение (1) . Получим:
(x-2)²+(y-1)²=25
b) Здесь координаты центра описанной окружности уже известны, так как центром описанной окружности в равностороннем треугольнике будет являться точка пересечения его медиан О (-4;9)
Длина радиуса же равна 2/3 длины медианы.
Найдем медиану:
Длина стороны : Р:3= 6√3/3=2√3
Тогда длина медианы = 2√3*cos 60° = 2√3*√3/2=3
Тогда 2/3 медианы или радиус описанной окружности равен :
R=2/3*3=2
Подставляем найденные координаты точки О и значение радиуса R=2
в уравнение (1) . Получим:
(x+4)²+(y-9)²=4
c) Центр вписанной в квадрат окружности находится на пересечения диагоналей квадрата, которые точкой пересечения делятся пополам.
Значит нужно найти координаты точки, являющейся серединой диагонали квадрата. Мы используем диагональ АС.
Тогда координаты точки О находим по формуле:
=((Ха+Xс)/2 ; (Ya+Yс)/2) = ( (-1+1)/2; ((-3)+(-1)))/2)= (0;-2)
Радиус вписанной в квадрат окружности будет равен половине его стороны ( возьмем сторону АВ)
АВ= sqrt ( (Xb-Xa)² + (Yb-Ya)²) = sqrt ((-1-(-1))²+ (-1-(-3)²)=
=sqrt(0+16)=4
=>R=AB/2= 4/2=2
Подставляем найденные координаты точки О и значение радиуса R=2 в уравнение (1) . Получим:
x²+(y+2)²=4
4.
Общее уравнение окружности с центром в точке (а; b) и радиусом R выглядит так (х-а)²+(у-b)²=R²
Центр есть, радиуса нет. для того, чтобы найти радиус, подставим вместо х и у координаты точки А, и координаты центра - точки В
(-1-3)²+(-4+2)²=R²⇒=R²=16+4=20, радиус равен √20=2√5
Искомое уравнение (х-3)²+(у+2)²=(2√5)²
или (х-3)²+(у+2)²=20
5 Найдем центр окружности, это середина диаметра
а=(-2+4)/2=1
b=(1-5)/2=-2
Центр (1;-2)
Найдем длину диаметра по ее координатам, а потом радиус, поделив длину на два.
√((4+2)²+(-5-1)²)=√(36+36)=6√2
значит, R²= (3√2)²=18
или так МО= √((1+2)²+(-2-1)²)=√18=3√2
искомое уравнение имеет вид
(х-1)²+(у+2)²=18
DC/CE=3/2;
15/CE=3/2;
CE=30/3=10