Диагонали ромба в точке пересечения делятся пополам и образуют 4 равных прямоугольных треугольника(половинки диагоналей это катеты, а сторона ромба гипотенуза) , пусть a,b катеты, с гипотенуза Сумма катетов : Также вспомним теорему Пифагора: Объединим оба уравнения в систему: Выразим из второго уравнения а (подстановка) Подставим в первое уравнение Это приведенное уравнение, решаем по т.Виета Подставляем оба найденных корня в подстановку Как мы видим ответом систем являются пары чисел (15;20) и (20;15) ,не имеет значения в каком порядке расположены числа, мы нашли половины диагоналей. Площадь ромба можно найти по формуле:
BC^2 = BA^2 - AC^2 = 10^2 - 6^2 = 100-36=64
BC = 8