Сторонами этого треугольника будут являться радиусы, следовательно треугольник равнобедренный.
Боковые углы треугольника будут равны 45 градусам. Так как треугольник равнобедренный, его высота, то есть расстояние от точки O до хорды CD, является также его медианой и биссектрисой. Поэтому треугольники, на которые делится высотой больший треугольник, являются также равнобедренными.
Следовательно, высота равна нижним катетам обоих треугольников, поэтому хорда равна высоте помноженной на два или 26 см.
Обозначим вершины трапеции аbcd ad=34 bc=2 проведём диагональ ас и опустим высоту сн. трапеция равнобокая dн=(аd-bc)/2=16 ac пересекает параллельные прямые аd и bc поэтому накрест лежащие углы равны . угол саd равен углу асв. кроме того са биссектриса угла всd . поэтому cad также равен углу асd. рассмотрим треугольник асd. в нем мы только что установили что угол а равен углу с. поэтому аd равно dc = 34 теперь рассмотрим треугольник снd. он прямоугольный . угол н прямой. dc=34 dh=16 по теореме пифагора ch = √(34^2-16^2)= 30 площадь трапеции - средняя линия (аd+bc)/2= 18 умножить на найденную высоту сн=30 - равна 540 см^2
Раз призма правильная, авс-равносторонний треугольник, в треугольнике вса1 известна вс=2, а1с=а1в= корень из 10(по теореме пифагора) , найдем высоту, она же является медианой в треугольнике а1вс и равна 3. площадь=высота *основание, значит s=2*3=6 2)в основании прямоугольного параллелепипеда - параллелограмм, найдем его площадь, для этого используем условие, что угол 60 градусов, высота будет корень из 3, тогда площадь основания=3корня из 3 умножить на корень из3=9. объем=площадь основания*высоту, зн. v=9уможить4=36
Боковые углы треугольника будут равны 45 градусам. Так как треугольник равнобедренный, его высота, то есть расстояние от точки O до хорды CD, является также его медианой и биссектрисой. Поэтому треугольники, на которые делится высотой больший треугольник, являются также равнобедренными.
Следовательно, высота равна нижним катетам обоих треугольников, поэтому хорда равна высоте помноженной на два или 26 см.