Хорды АВ=СД=8, проводим радиусы АО=ВО=СО=ДО, треугольник АОВ=треугольник СОД по двум сторонам и углу между ними уголАОВ=уголСОД (уголАОВ и уголСОД-центральные углы, уголАОД=дуге АВ, уголСОД=дуге СД, равные хорды отсекают равные дуги, дуга СД=дуге АВ), проводим высоты ОН на АВ и ОК на СД, в равных треугольниках высоты проведенные на основание равны ОН=ОК, НК-расстояние=6, ОН=НК=1/2НК=6/2=3, ОН=ОК=медианам, биссектрисам, треугольники равнобедренные, АН=ВН=1/2АВ=8/2=4, треугольник АНО прямоугольный, АО=корень(АН в квадрате+ОН в квадрате)=корень(16+9)=5=радиус
Правильный ответ: 90 градусов. Т.к. прямые параллельны, то сумма внутренних односторонних углов равна 180 градусов (назовём их целыми односторонними углами), а сумма односторонних углов, разбитых биссектрисами (нецелых односторонних углов), равна 180 / 2 = 90 (градусов). При пересечении биссектрис образуется треугольник, в котором два угла мы уже определили (они равны по 45 градусов каждый, т.к. 90 / 2 = 45). Осталось определить третий угол образовавшегося треугольника, т.е. угол между биссектрисами внутренних односторонних углов. Он равен: 180 - 90 = 90 (градусов).