Основания трапеции параллельны, поэтому в ∆ АВС и ∆ ВМН ∠ВМН=∠ВАС - соответственные при пересечении параллельных прямых секущей АВ, ∠В - общий. ⇒ ∆ABC~∆ВМН по первому признаку подобия треугольников.
Чтобы решить эту задачу, нужно знать правило подобия треугольников. и сделать правильный чертеж. в данном случае подобными являются треугольники АВС и МВН. правило подобия для этих треугольников: АВ/МВ=МН/АС=коэффициент. По правилу пропорции следует, что АВ*МН=АС*МВ. отсюда, МН=АС*МВ/АВ АС=АМ+МВ=8+6=14 МВ=8. АС=21 Подставляем и получаем: МН=14*8/21. 14 и 21 сокращаются, и в итоге получается: МН=2*8/3 МН=16/3= 5 целых и 1/3
См. рисунок в приложении Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°. Соединяем точку А₁ с точкой D. В треугольнике АА₁D AA₁=2 м AD=1 м ∠A₁AD=60° По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3 A₁D=√3 м Треугольник A₁AD- прямоугольный по теореме обратной теореме Пифагора: АА₁²=AD²+A₁D² 2²=1+( √3 )² A₁D⊥AD В основании квадрат, стороны квадрата взаимно перпендикулярны АС⊥AD Отсюда AD⊥ плоскости A₁CD ВС || AD BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD A₁C - высота призмы A₁C=Н Из прямоугольного треугольника A₁DC: А₁С²=А₁D²-DC²=(√3)²-1=3-1=2 A₁C=Н=√2 м
Если угол при основании 45 градусов, то прямоугольный треугольник, где высота трапеции стороной этого треугольника, а бедро трапеции гипотенузой - равнобедренный, так как второй угол этого прямоугольного треугольника тоже 90-45=45 градусов. Значит, кусочек нижнего основания трапеции, отсекаемый ее высотой равен тоже 3 см. Проведем вторую высоту трапеции, тогда получим, что высоты делят большое основание на три части - две по 3 см и одна - как малое основание 5 см. Следовательно, большое основание имеет размер 3+5+3=11 см.
Основания трапеции параллельны, поэтому в ∆ АВС и ∆ ВМН ∠ВМН=∠ВАС - соответственные при пересечении параллельных прямых секущей АВ, ∠В - общий. ⇒ ∆ABC~∆ВМН по первому признаку подобия треугольников.
Из подобия следует отношение ВМ:АВ=МН:АС
АВ=ВМ+АМ=8+6=14 (см),
8:14=МН:21
14МН=168
МН=12 (см)