М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Назар233
Назар233
23.07.2022 14:12 •  Геометрия

Основание пирамиды - прямоугольный треугольник с острым углом 30. высота пирамиды равна 4 см и образует со всеми боковыми ребрами углы 45. найти площадь боковой поверхности пирамиды.,с рисунком

👇
Ответ:
valyashchenko20
valyashchenko20
23.07.2022

Дано: пирамида SABC, SH⊥(ABC), SH = 4 см,

          ∠ASH=∠CSH=∠BSH=45°, ∠ACB=90°, ∠BAC=30°

Найти : Sбок

Решение : так как боковые рёбра образуют с высотой пирамиды равные углы, значит, они образуют равные углы с основанием пирамиды (острые углы прямоугольных треугольников, равных по общему катету и острому углу). ⇒ Высота опускается в центр окружности, описанной около основания пирамиды. Основание пирамиды - прямоугольный треугольник, центр описанной окружности лежит на середине гипотенузы.    H ∈ AB, AH = BH.

SH⊥(ABC)  ⇒  SH⊥AB  ⇒  ∠SHA=90°

ΔSAH - прямоугольный равнобедренный, так как ∠SAH=∠ASH=45°   ⇒  AH = SH = 4 см    ⇒  AB = AH + BH = 8 см;  SA = 4√2 см

SA = SB = SC = 4√2 см

ΔABC - прямоугольный. Катет, лежащий против угла 30°, равен половине гипотенузы. BC = AB/2 = 4 см

По теореме Пифагора

AC² = AB² - BC² = 8² - 4² = 48

AC = √48 = 4√3 см

S_{\Delta ASB}=\dfrac{AB\cdot SH}2=\dfrac {8\cdot 4}2=16 см²

Площадь двух других граней можно найти по формуле Герона

S=\sqrt{p(p-a)(p-b)(p-c)}

ΔASC, p=\dfrac{4\sqrt2+4\sqrt2+4\sqrt3}2=4\sqrt2+2\sqrt3

S_{\Delta ASC}=\sqrt{(4\sqrt2+2\sqrt3)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt3)}=\\\\=\sqrt{(4\sqrt2+2\sqrt3)(2\sqrt3)(2\sqrt3)(4\sqrt2-2\sqrt3)}=\sqrt{(32-12)\cdot 12}=\sqrt{240}\boldsymbol{=4\sqrt{15}}

ΔBSC, p=\dfrac{4\sqrt2+4\sqrt2+4}2=4\sqrt2+2

S_{\Delta BSC}=\sqrt{(4\sqrt2+2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4)}=\\\\=\sqrt{(4\sqrt2+2)\cdot2\cdot2(4\sqrt2-2)}=\sqrt{(32-4)\cdot 4}=\sqrt{28\cdot 4}\boldsymbol{=4\sqrt{7}}

S=S_{\Delta ASB}+S_{\Delta ASC}+S_{\Delta BSC}=16+4\sqrt{15}+4\sqrt 7

ответ:  4(4 + √15 + √7) см²


Основание пирамиды - прямоугольный треугольник с острым углом 30. высота пирамиды равна 4 см и образ
4,6(99 оценок)
Открыть все ответы
Ответ:
szaikin
szaikin
23.07.2022

Сложность в том, что у меня нет возможности построить эту пирамиду, но поскольку тут проверяется масса формул, попробую объяснить без рисунка. Объем пирамиды равен произведению трети площади основания на высоту. Площадь основания - площадь правильного треугольника, равна а²√3/4, чтобы найти сторону основания а, надо связать ее формулой с радиусом вписанной в основание окружности, а₃=2r*tg(180°/3)=2r*tg60°=2r*√3, и тогда площадь основания 4*r²*3√3/4=r²*3√3;      высота основания, т.е. высота правильного треугольника равна а₃√3/2=2r*√3*√3/2=3r, а треть высоты равна проекции апофемы на плоскость основания, угол, образованный апофемой и этой проекцией, и есть данный в условии, угол γ, т.к. апофема перпендикулярна стороне основания, то по теореме о трех перпендикулярах и проекция ей перпендикулярна. Треть высоты основания равна  3r/3=r. Чтобы найти высоту пирамиды, надо проекцию апофемы умножить на tgγ, т.е. высота равна r*tgγ.

Объем пирамиды равен r²*3√3*r*tgγ/3=r в кубе √3*tgγ

4,8(15 оценок)
Ответ:
wikkouiii
wikkouiii
23.07.2022
Треугольник АВС - равнобедренный, так как АВ= ВС
Значит ∠1 = ∠ 2
∠2 = ∠ 3  как внутренние накрест лежащие углы при параллельных прямых BC и AD.
Значит  ∠1 = ∠ 2 = ∠ 3 
Пусть ∠1 = ∠ 2 = ∠ 3 = х°
Треугольник АСD - равнобедренный, так как АC= AD
Значит ∠4 = ∠ 5

Так как сумма углов прилежащих к боковой стороне трапеции равна 180°, то
∠С + ∠ D = 180° 
x° + ∠4 +  ∠ 5 = 180°
x° + ∠4 +  ∠ 4 = 180°    ⇒2· ∠ 4 = 180°- x° ⇒∠ 4 = (180°- x° )/2
Так как  углы при основании  равнобедренной трапеции равны,
 ∠А = ∠ D  
x° + x° = ∠5,  ∠ 4 =  ∠5 
2х° = (180°- x° )/2
4х°= 180° - х°
5х°=180,
х°=36°
 Значит  ∠1 = ∠ 2 = ∠ 3 =36° , ∠ 4 =  ∠5 =(180°-36°)/2=72°
∠ A = ∠1 +∠3 = 36°+36°= 72° , ∠ B =  180°-72°=108°
ответ. ∠ A = ∠ D =72° , ∠ B =  ∠C =180°-72°=108°
4,7(15 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ