М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yulya158
yulya158
18.01.2023 14:02 •  Геометрия

Диагональ ас параллелограмма авсd перпендикулярна стороне ав и равна стороне сd. найдите градусную меру тупого угла этого параллелограмма.

👇
Ответ:
maschkincolyaoyf9ei
maschkincolyaoyf9ei
18.01.2023
Известно, что АС перпендикулярно АВ, угол DAC = 90градусов.
Т.к. ABCD - параллелограмм, то AD || BC, а АС - секущая, тогда по свойству параллельных прямых, угол DAC = ACB.
Из условия AC = CD, сделаем вывод, что треугольник DAC - прямоугольный. Сумма углов треугольника = 180 градусов. 
А т.к. стороны равны, то угол ACD = ADC. Найдем эти углы: 180 - 90 = 90 : 2 = 45 градусов.
Найдем сумму углов DAC и BAC = 90 + 45 = 135 градусов.
Диагональ ас параллелограмма авсd перпендикулярна стороне ав и равна стороне сd. найдите градусную м
4,4(78 оценок)
Открыть все ответы
Ответ:
МашаНяша01
МашаНяша01
18.01.2023

Пусть имеем искомый треугольник ABC, в котором AB=14, BC=22. Из вершины B проведем медиану BM, BM=12. Необходимо найти величину стороны AC.

Обозначим АС=2x, тогда AM=CM=x, т.к. M - середина AC ( BM - медиана). По свойству медианы, она делит треугольник на два равновеликих треугольника (треугольники, у которых равны площади). Поскольку BM - медиана в треугольнике ABC, то S(ABM)=S(CBM) по вышеописанному свойству.

1). По формуле площади треугольника Герона имеем:

S(ABM)=√p*(p-AB)*(p-BM)*(p-AM), где p - полупериметр треугольника ABM;

p=(AB+BM+AM)/2=(14+12+x)/2=7+6+0,5*x=13+0,5*x;

Тогда, S(ABM)=√(13+0,5*x)*(13+0,5*x-14)*(13+0,5*x-12)*(13+0,5*x-x)=√(13+0,5*x)*(0,5*x-1)*(0,5*x+1)*(13-0,5*x);

Используя формулу разности квадратов, можем привести к следующему виду:

S(ABM)=√(169-0,25*x²)*(0,25*x²-1);

2). Аналогично, S(CBM)=√p*(p-MB)*(p-MC)*(p-BC), где p - полупериметр треугольника CBM;

p=(MB+MC+BC)/2=(12+x+22)/2=6+11+0,5*x=17+0,5*x;

Тогда, S(CBM)=√(17+0,5*x)*(17+0,5*x-12)*(17+0,5*x-x)*(17+0,5*x-22)=√(17+0,5*x)*(0,5*x+5)*(17-0,5*x)*(0,5*x-5);

Используя формулу разности квадратов, можем привести к следующему виду:

S(CBM)=√(289-0,25*x²)*(0,25*x²-25);

3). Т.к. по вышедоказанному S(ABM)=S(CBM), то подставив полученные вычисления, получаем:

√(169-0,25*x²)*(0,25*x²-1)=√(289-0,25*x²)*(0,25*x²-25);

Возведем обе части в квадрат:

(169-0,25*x²)*(0,25*x²-1)=(289-0,25*x²)*(0,25*x²-25);

42,25*x²-0,0625*x²-169+0,25*x²=72,25*x²-0,0625*x²-7225+6,25x²;

42,5*x²-169=78,5x²-7225;

36*x²=7056;

x²=196;

x=±14, но так как x - это величина стороны, то (-14) - посторонний корень;

4). АС=2x=2*14=28, что и требовалось найти;

ответ: AC=28.


Две стороны треугольника равны 14 и 22. медиана, проведенная к третьей стороне равна 12 см. найдите
4,6(98 оценок)
Ответ:
lonelyofiory
lonelyofiory
18.01.2023

Пусть имеем искомый треугольник ABC, в котором AB=14, BC=22. Из вершины B проведем медиану BM, BM=12. Необходимо найти величину стороны AC.

Обозначим АС=2x, тогда AM=CM=x, т.к. M - середина AC ( BM - медиана). По свойству медианы, она делит треугольник на два равновеликих треугольника (треугольники, у которых равны площади). Поскольку BM - медиана в треугольнике ABC, то S(ABM)=S(CBM) по вышеописанному свойству.

1). По формуле площади треугольника Герона имеем:

S(ABM)=√p*(p-AB)*(p-BM)*(p-AM), где p - полупериметр треугольника ABM;

p=(AB+BM+AM)/2=(14+12+x)/2=7+6+0,5*x=13+0,5*x;

Тогда, S(ABM)=√(13+0,5*x)*(13+0,5*x-14)*(13+0,5*x-12)*(13+0,5*x-x)=√(13+0,5*x)*(0,5*x-1)*(0,5*x+1)*(13-0,5*x);

Используя формулу разности квадратов, можем привести к следующему виду:

S(ABM)=√(169-0,25*x²)*(0,25*x²-1);

2). Аналогично, S(CBM)=√p*(p-MB)*(p-MC)*(p-BC), где p - полупериметр треугольника CBM;

p=(MB+MC+BC)/2=(12+x+22)/2=6+11+0,5*x=17+0,5*x;

Тогда, S(CBM)=√(17+0,5*x)*(17+0,5*x-12)*(17+0,5*x-x)*(17+0,5*x-22)=√(17+0,5*x)*(0,5*x+5)*(17-0,5*x)*(0,5*x-5);

Используя формулу разности квадратов, можем привести к следующему виду:

S(CBM)=√(289-0,25*x²)*(0,25*x²-25);

3). Т.к. по вышедоказанному S(ABM)=S(CBM), то подставив полученные вычисления, получаем:

√(169-0,25*x²)*(0,25*x²-1)=√(289-0,25*x²)*(0,25*x²-25);

Возведем обе части в квадрат:

(169-0,25*x²)*(0,25*x²-1)=(289-0,25*x²)*(0,25*x²-25);

42,25*x²-0,0625*x²-169+0,25*x²=72,25*x²-0,0625*x²-7225+6,25x²;

42,5*x²-169=78,5x²-7225;

36*x²=7056;

x²=196;

x=±14, но так как x - это величина стороны, то (-14) - посторонний корень;

4). АС=2x=2*14=28, что и требовалось найти;

ответ: AC=28.


Две стороны треугольника равны 14 и 22. медиана, проведенная к третьей стороне равна 12 см. найдите
4,5(23 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ