Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Есть формула длины хорды: L=2*R*Sin(α/2), где α - центральный угол, а R - радиус окружности. В нашем случае это радиус описанной вокруг треугольника АВС окружности. Угол САN - вписанный угол и равен 45°, (так как <CAN=<BAC - <BAM = 75°-30°=45°), значит центральный угол CON равен 90°, а его половина равна 45°. Найдем радиус: R=AC/(2*Sin45°) = √2/2*(√2/2) = 1. Зная радиус окружности, найдем величину половины центрального угла АОВ, а, следовательно, величину вписанного угла АСВ . Он равен arcsin(α/2)=AB/(2*R) = √3/2. То есть угол АСВ равен = 60°. Но угол ВСN равен 30°, как вписанный угол, опирающийся на ту же дугу, что и вписанный угол ВАN. Значит угол АСN = <ACB+<BCN = 60°+30°=90°. Итак, угол АСN прямой, значит АN - диаметр и равен 2*R = 2. ответ: длина АN = 2.
15*10 = х*х
х² = 150
х = √150=√(25*6) = 5√6
АК = 5√6