Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
Квадрат ABCD
AB = 22 см
п ≈ 3
Найти:R - ?
H - ?
S полн ≈ ?
Решение:Квадрат вращается вокруг своей стороны и мы получаем цилиндр, у которого радиус основания и высота равны стороне этого квадрата.
=> R = H = AB = 22 см.
S полной поверхности цилиндра = S удвоенной площади основания (S осн) + S боковой поверхности цилиндра (S бок)
S осн = пR²
S бок = 2пRH
S осн = 3 * 22² = 3 * 484 = 1452 см²
S бок = 2 * 3 * 22 * 22 = 2 * 1452 =2904 см²
S полн = 2 * 1452 + 2904 = 2904 + 2904 ≈ 5808 см²
ответ: 5808 см², 22 см, 22 см.
Пусть К - середина АВ.
РА = РВ как радиусы, ⇒ ΔРАВ равнобедренный, ⇒ РК - медиана и высота, т.е. РК⊥АВ
ОА = ОВ как радиусы, ⇒ ΔОАВ равнобедренный, ⇒ ОК - медиана и высота, т.е. ОК⊥АВ.
Через одну точку К можно провести единственную прямую, перпендикулярную АВ, ⇒ РК и ОК лежат на одной прямой.
Значит, РО⊥АВ.