Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT
1)ВК + КН = ВН
ВН = 6,5 см + 2,5 см = 9 см
2)Δ АКН ~ ΔВКС (подобны)
т.к. ∠ НВС = ∠АНВ = 90° оба прямоугольные
∠АКН = ∠ВКС - как вертикальные
3) Найдём коэффициент подобия k
k= ВК/КН = 6,5/2,5 = 2,6
4) С коэффициента подобия k = 2,6 выразим длины сходственных сторон АН и ВС.
АН - х
ВС= 2,6х
АВ = ВС - как стороны ромба
АВ = 2,6х
5) Из прямоугольного Δ АВН с теоремы Пифагора получим уравнение:
АВ² = ВН² + АН²
(2,6х)² = 9² + х²
6,76х² = 81 + х²
6,76х² - х² = 81
5,76х² = 81
х² = 81 : 5,76
х² =14,0625
х = √14,0625
х = 3,75 см
6) Находим сторону ромба АВ:
АВ = 2,6 · 3,75 = 9,75 см
7) Наконец находим площадь ромба
S = ah
S = 9,75 · 9 = 87,75 cм²
ответ: S = 87,75 см²