Прямая АВ ║ пл. SCD, т.к. АВ║CD. Поэтому расстояние oт т. А до плоскости SCD равно расстоянию от любой точки прямой АВ до этой плоскости, в том числе и от точки М - середины отрезка АВ, до плоскоти SCD. ΔSCD: проведём медиану SN , SN также высота ΔSCD, SN⊥CD. ΔSMN - равнобедренный, SM=SN как медианы равных треугольников SAB и SCD. MH - высота ΔSMN , MH⊥SN . CD⊥SN и CD⊥MN , SN и MN пересекаются, принадлежат пл. SMN ⇒ CD⊥ плоскости SMN ⇒ CD⊥ MH , лежащей в пл. SMN . MH - перпендикуляр к плоскости SCD. Значит, MH - расстояние от АВ до пл. SCD . Точка О - центр основания АВСD. ΔAOS - прямоугольный:
Как известно количество вершин и сторон в любом многоугольнике совпадает, пускай в нашем случае их будет х,
дальше будем рассуждать следующим образом: чтобы узнать число диагоналей каждую вершину соединяем с другими вершинами, кроме нее самой и соседних, получаем х *(х-3), но так как при таком соединении диагонали повторяются 2 раза, то их число в х-угольнике будет х*(х-3)/2
по условию имеем соотношение (х*(х-3)/2)/х = 2,5 х² - 3х = 5х х² - 8х = 0 х = 0 либо х = 8 первый корень не удовлетворяет условию,значит х = 8 ответ: 8
ΔSCD: проведём медиану SN , SN также высота ΔSCD, SN⊥CD.
ΔSMN - равнобедренный, SM=SN как медианы равных треугольников SAB и SCD.
MH - высота ΔSMN , MH⊥SN .
CD⊥SN и CD⊥MN , SN и MN пересекаются, принадлежат пл. SMN ⇒
CD⊥ плоскости SMN ⇒ CD⊥ MH , лежащей в пл. SMN .
MH - перпендикуляр к плоскости SCD.
Значит, MH - расстояние от АВ до пл. SCD .
Точка О - центр основания АВСD.
ΔAOS - прямоугольный: