1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
2. Тогда уг АВС = 60 град
3. По условию т М делит АВ пополам, значит ВМ=10
4. Рассмотрим треуг МВС, МВ=ВС- по построению, уг В=60 град - это вершина равнобедренного треуг МВС. Значит два угла при основании равны между собой по свойству равнобедренного треугольника.
180-60=120(град)-сумма углов при основании,
120:2=60(град)-углы при основании.
5. все углы в треуг МВС 60 град, знгачит это равносторонний треугольник.
Значит СМ=МВ=ВС=10
ответ: СМ=10
2.
АN,CM-медианы по условию задачи, а медианы в треугольнике в точки пересечения делятся 2:1, считая от вершины.
Значит АО=2ОN
ON=12:3=4(см)
АО=2*4-8(см)
ответ: АО=8см