На стороне ac треугольника abc отложен отрезок am, равный третьей части стороны ab, а на стороне ab — отрезок an, равный третьей части стороны ac. найдите mn, если bc=15.
Если прямые, пересекающие две другие прямые, отсекают на обеих из них пропорциональные отрезки, начиная от вершины, то такие прямые параллельны (обратная теорема Фалеса).
AM1/AB=AN1/AC => M1N1||BC
△AM1N1~△ABC (углы при основаниях равны как соответственные при параллельных) M1N1=BC/3 =5
△AMN=△AM1N1 (по двум сторонам и углу между ними) MN=M1N1 =5
1. Вторая сторона равна десяти. В равнобедренном треугольнике высота является и биссектрисой и медианой. В нашем случае медианой. Значит, находим второй катет по теореме Пифагора. 100-64=36. Катет равен 6. Всё основание равно 12. Площадь равна половине произведения стороны на высоту, проведённую к этой стороне. То есть S=1\2*12*8=48. 3. Значит, катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы. То есть 6:2=3. Находим высоту по теореме Пифагора. 36-9=25. Высота равна 5. Большее основание равно 16, так как трапеция равнобедренная. Площадь равна произведению полусуммы оснований на высоту 1\2(10+16)*5= 65.
Гол 11°15'-это одна всьмая часть прямого угла. Значит, вначале строим прямой угол (надеюсь, вы знаете, как это делается) . На сторонах прямого угла откладываем равные отрезки. Затем соединяем концы этих отрезков. Получим равнобедренный прямоугольный треугольник, гипотенузой которого и будет отрезок, соединивший эти концы. Затем разделим эту гипотенузу на восемь равных частей. Проводим лучи из вершины прямого угла через концы этих отрезков. Получим восемь углов, каждый из которых будет равен11°15'
AN1=AN=AC/3
Если прямые, пересекающие две другие прямые, отсекают на обеих из них пропорциональные отрезки, начиная от вершины, то такие прямые параллельны (обратная теорема Фалеса).
AM1/AB=AN1/AC => M1N1||BC
△AM1N1~△ABC (углы при основаниях равны как соответственные при параллельных)
M1N1=BC/3 =5
△AMN=△AM1N1 (по двум сторонам и углу между ними)
MN=M1N1 =5