4.
Дано:
ABC - прямоугольный треугольник
AB = 5см
BC = 12см
AC - гипотенуза
BD - высота, опущенная на гипотенузу AC
Для начала вычислим длину гипотенузы AC, воспользовавшись теоремой Пифагора:
Опустив высоту AD на гипотенузу AC у нас получилось два прямоугольный треугольника - ABD с гипотенузой AB и BCD с гипотенузой BC. Пусть AD = x, тогда DC = 13 - x, так как AC = 13 см.
Поскольку высота AD является общим катетом для треугольников ABD и BCD запишем:
Итак, AD = x = см., а DC = 13 - x =
см.
Найдём высоту BD:
см.
Высота BD делит гипотенузу AC на отрезки 1 12/13 см. и 11 1/13 см.
Высота BD равна 4,615 см.
(странные какие-то цифры, но я перепроверил решение несколько раз - всё сходится вроде бы...)
5.
Косинус угла равен отношению прилежащего катета к гипотенузе.
AB является гипотенузой. Следовательно:
cos(30) = 2 / AB
Объяснение:
Дано: отрезок АВ, прямая а, а⊥АВ, АО=ОВ. Доказать что АС=ВС.
Возьмем на прямой а точку С, построим ΔАВС.
АО=ОВ, ∠АОС=∠ВОС=90° по условию, СО - общая сторона, значит
ΔАОС=ΔВОС и тогда АС=ВС. Доказано.
Ось Х - АС
Ось У - перпендикулярно АС в сторону В
Ось Z - AA1
Высота к АС=√(12^2-(16/2)^2)=4√5
Координаты интересующих точек
С(16;0;0)
К(4;2√5;6)
М(4;0;0)
Направляющий вектор КМ(0;-2√5;-6)
Угол между КМ и АС
cos a =| 16*0- 2√5*0-6*0|/|AC|/|KM|=0
a = π/2 - прямые перпендикулярны.
Уравнения плоскости АВС
z=0
Угол между КМ и АВС
sin a = |-6|/√(20+36)/1=3/√14