М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mikki60
mikki60
16.02.2023 21:08 •  Геометрия

Восновании прямой треугольной призмы abca1b1c1 лежит равнобедренный треугольник abc с основанием ac. точка k- середина ребра a1b1, а точка m делит ребро acв отношении am: nc=1: 3. а) докажите что km перпендикулярно ас. б)найдите угол между прямой км и плоскостью авс ,если ав=12 , ас=16 и aa1=6

👇
Ответ:
serikovvlad19
serikovvlad19
16.02.2023
Пусть А- начало координат.
Ось Х - АС
Ось У - перпендикулярно АС в сторону В
Ось Z - AA1

Высота к АС=√(12^2-(16/2)^2)=4√5

Координаты интересующих точек
С(16;0;0)
К(4;2√5;6)
М(4;0;0)

Направляющий вектор КМ(0;-2√5;-6)

Угол между КМ и АС
cos a =| 16*0- 2√5*0-6*0|/|AC|/|KM|=0
a = π/2 - прямые перпендикулярны.

Уравнения плоскости АВС
z=0

Угол между КМ и АВС
sin a = |-6|/√(20+36)/1=3/√14
4,7(9 оценок)
Открыть все ответы
Ответ:
10ok
10ok
16.02.2023

4.

Дано:

ABC - прямоугольный треугольник

AB = 5см

BC = 12см

AC - гипотенуза

BD - высота, опущенная на гипотенузу AC

Для начала вычислим длину гипотенузы AC, воспользовавшись теоремой Пифагора:

AC = \sqrt{AB^{2}+BC^{2} } =\sqrt{5^{2} +12^{2} }=\sqrt{169} = 13

Опустив высоту AD на гипотенузу AC у нас получилось два прямоугольный треугольника - ABD с гипотенузой AB и BCD с гипотенузой BC. Пусть AD = x, тогда DC = 13 - x, так как AC = 13 см.

Поскольку высота AD является общим катетом для треугольников ABD и BCD запишем:

BD = \sqrt{AB^{2}-x^{2} } =\sqrt{BC^{2}-(13-x)^{2} } \\AB^{2}-x^{2} = BC^{2}-(13-x)^{2}\\5^{2}-x^{2} = 12^{2}-(13^{2} - 26x + x^{2} )\\25-x^{2} = 144-169 + 26x - x^{2}\\26x = 50\\x=\frac{25}{13} = 1\frac{12}{13}

Итак, AD = x = 1\frac{12}{13} см., а DC = 13 - x = 11\frac{1}{13} см.

Найдём высоту BD:

BD = \sqrt{AB^{2}-AD^{2} } = \sqrt{5^{2}-(\frac{25}{13} )^{2} } = 4.615 см.

Высота BD делит гипотенузу AC на отрезки 1 12/13 см. и 11 1/13 см.

Высота BD равна 4,615 см.

(странные какие-то цифры, но я перепроверил решение несколько раз - всё сходится вроде бы...)

5.

Косинус угла равен отношению прилежащего катета к гипотенузе.

AB является гипотенузой. Следовательно:

cos(30) = 2 / AB

\frac{\sqrt{3} }{2} = \frac{2}{AB} \\AB = \frac{4}{\sqrt{3} }

4,4(100 оценок)
Ответ:
uncu4ek
uncu4ek
16.02.2023

Объяснение:

Дано: отрезок АВ,  прямая а,  а⊥АВ,  АО=ОВ. Доказать что АС=ВС.

Возьмем на прямой а точку С, построим ΔАВС.

АО=ОВ,  ∠АОС=∠ВОС=90° по условию,  СО - общая сторона, значит

ΔАОС=ΔВОС и тогда АС=ВС. Доказано.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                


Докажите, что концы отрезка, через середину которого проведена прямая перпендикулярно отрезку, равно
4,8(51 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ