По свойству отрезков касательных к окружности: отрезки
НД=ХД, СН=МС, ВМ=ВZ, АZ=AX. Если в прямоугольную трапецию вписана окружность, то сумма её оснований равна сумме её боковых сторон, т.е
АД+ВС=АВ+СД. Если в прямоуг. тр. вписана окр., то высота равна боковой стороне АВ=2r =2*2 (r-радиус окружности), значит по свойству касательных ZB=BM=2 , MC=3-BM=3-2=1, если точка касания делит боковую сторону на отрезки СН и НД, то радиус вписанной окружности равен r=√(CH*НД)
отсюда r²=CH*НД
2²=1*НД
НД=4
НД+СН=5,
теперь подставив в формулу АД+ВС=АВ+СД , получим
АД+3=4+5
АД=9-3=6
S=(BC+AД)/2*МХ
S=(3+6)/2*4=18
Подробнее - на -
Объяснение:
По свойству отрезков касательных к окружности: отрезки
НД=ХД, СН=МС, ВМ=ВZ, АZ=AX. Если в прямоугольную трапецию вписана окружность, то сумма её оснований равна сумме её боковых сторон, т.е
АД+ВС=АВ+СД. Если в прямоуг. тр. вписана окр., то высота равна боковой стороне АВ=2r =2*2 (r-радиус окружности), значит по свойству касательных ZB=BM=2 , MC=3-BM=3-2=1, если точка касания делит боковую сторону на отрезки СН и НД, то радиус вписанной окружности равен r=√(CH*НД)
отсюда r²=CH*НД
2²=1*НД
НД=4
НД+СН=5,
теперь подставив в формулу АД+ВС=АВ+СД , получим
АД+3=4+5
АД=9-3=6
S=(BC+AД)/2*МХ
S=(3+6)/2*4=18
Подробнее - на -
Δ АВС пободен А1В1С1 и его стороны 3х; 4х и 5х.
Р=3х+4х+5х=12х; 12х=48 см; х=4 см; наименьший катет 3х=12 см - ответ.
ИЛИ по т. Пифагора: 5²=4²+а²; а²=25-16; а²=9; а=3 см.