1)В прямоугольном треугольнике ABC, угол А=90 градусов, АВ=20 см, высота АД=12 см.
Найти: АС и COS угла С.
ДВ"=АВ"-АД" = 400-144=256
ДВ=16
треугольники АВС и ДВА подобны по первому признаку подобия (два угла равны), следовательно ДВ/АВ=АВ/СВ
16/20=20/СВ
СВ=20*20:16=25
АС"=СВ"-АВ"=25"-20"=625-400=225
АС=15
мы нашли АС=15,
теперь ищем CosC
CosC=АС/СВ=15/25=3/5
CosC=3/5
ответ: CosC=3/5, АС=15см
2)
AD=AB cos A, S = AB AD sin A = AB² sin A cos A = 1/2 AB² sin(2A) = 72 sin(82°) = 72 cos(8°) ≈ 71,2993 см²
В прямоугольном треугольнике АНВ: угол НАВ=180°-120°=60° (смежные углы), угол НВА=90°-60°=30° (сумма острых углов прямоугольного треугольника=90°).
АН - катет, лежащий против угла 30 градусов. АН=4.
НВ= √(8²-4²)=√48.
В прямоугольном треугольнике СНВ по Пифагору СВ=√(121+48)=13.
НМ - медиана из прямого угла и равна половине гипотенузы СВ.
ответ: НМ=6,5.