Пусть дана равнобедренная трапеция АВСD. АС и ВD - диагонали, угол между которыми равен 110⁰. Пусть точка пересечения диагоналей - точка О. Тогда угол ВОС=110⁰. угол АОDтоже равен 110⁰,как вертикальный к ВОС.Углы СОD=ВОА=70⁰,как смежные с углами ВОС и АОD. так как диагонали в данной трапеции равны, то треугольник АВС=ΔВСD по трем сторонам (АВ=ВС=СD и АС=ВD). Отсюда получим равные углы: ВАС=ВСА=СВD=СDВ. Они все равны по 35⁰((180 - 110)/2=35). Рассмотрим ΔВОА. В нем угол ВОА=70⁰ а угол ВАС=35⁰, тогда угол АВО=180-70-35=75⁰. Найдем углы: угол АВС= 75+35= 110⁰ ; аналогично угол ВСD=110⁰ ; угол ВАD= 35+35=70⁰ ; аналогично угол СDА=70⁰
ответ: 70⁰,110⁰,110⁰,70⁰
Тогда угол при вершине треугольника равен 180 - 70 = 110° - так как он является смежным с внешним углом а сумма смежных углов равна 180°.
Углы при основании равнобедренного треугольника равны. Тогда учитывая что сумма внутренних углов треугольника равна 180°, получим что каждый из углов при основании равен (180 - 110) / 2 = 35°.
ответ: 110 , 35 , 35 .