На луче с началом о отметьте точки а, в, и с так что точка в лежит между точками о и а, а точка а между точками о и с . сравните отрезки ов и ао, ос и оа, ов и ос.
Поскольку у параллелограмма АВСД противоположные стороны параллельны и равны, противоположные углы равны, значит АД=ВС и АД║ВС АВ=СД и АВ║СД ∠А=∠С ∠В=∠Д
Рассмотрим треугольники АМД и ВСК. АМ=СК - это дано по условию задания. АД=ВС - это мы выяснили выше ∠А=∠С - это мы выяснили выше А эти равности дают нам право утверждать, что треугольник АМД=треугольнику ВСК. А это означает, что МД=ВК. Также из равности треугольников можно утверждать, что ∠АМД=∠СКВ. ∠МДА=∠КВС.
Сумма мер двух смежных углов равна 180°, значит ∠ВМД+∠АМД=180°, отсюда ∠ВМД=180° - ∠АМД ∠ДКБ+∠СКВ=180°, отсюда ∠ДКБ=180° - ∠СКВ
Поскольку ∠АМД=∠СКВ, а значит ∠ВМД=∠ДКБ
Поскольку ∠МДА=∠КВС и ∠АВС=∠АДС, тогда ∠АВК=∠СДМ, так как ∠АВС=∠АВК+∠КВС, отсюда ∠АВК=∠АВС-∠КВС ∠АДС=∠МДА+∠СДМ, отсюда ∠СДМ=∠АДС-∠МДА
АВ=АМ+ВМ, отсюда ВМ=АВ-АМ СД=СК+КД, отсюда КД=СД-СК Поскольку АВ=СД, а АМ=СК, значит ВМ=КД. Поскольку АВ║СД, то и ВМ║КД.
Получаеться, мы выяснили, что МД=ВК ∠ВМД=∠ДКБ ∠АВК=∠СДМ ВМ=КД ВМ║КД.
Из всего этого мы можем сделать вывод, что МВКД - это параллелограмм, поскольку у него противоположные стороны и углы равны.
Вообще просто. Так как известно что стороны в четыре раза меньше - тогда получается, что отсечен подобный треугольник с коэффициентом подобия = 1/4. А есть такое замечательное свойство, что высота у подобных треугольников отличается на коэффициент подобия. А так как искомая величина - площадь = основание*высоту/2 то при перемножении коэффициент подобия перемножится и составит 1/16. Таким образом, площадь маленького отсеченного треугольника составит 1/16 от большого. Трапеция при этом - оставшаяся часть = 15/16=30. Отсюда следует, что 1/16 = 2.
OB < OA
OC > OA
OB < OC