1) Б
2) Б
3) А
4)В
5) Г
6) А
7)Пусть боковая сторона = 5х, тогда основание =2х
Так как треугольник равнобедренный, значит вторая боковая сторона тоже = 5х
Отсюда периметр Р=5х + 2х + 5х=48
Решаем уравнение 5х + 2х + 5х = 48
12х = 48
х= 4
Основание = 2х = 2*4 = 8
Боковая сторона = 5х = 5*4 = 20
8)Т.к. ΔADC = ΔA1D1C1, то АС = А1С1, AD = А1D1, ∠A = А1 АВ = AD + DB, A1B1 = A1D1 + D1B1, т.к. АВ = А1В1, DB = D1B1, то AD = A1D1
В ΔАВС и ΔА1В1С1:
∠А = ∠А1 АС = А1С1, т.к. ΔADC = ΔA1D1C1, АВ = А1В1, следовательно, ΔАВС = ΔА1В1С1 по 1-му признаку равенства треугольников.
Решение
Пусть ABCDA1B1C1D1 – данная призма, основания ABCD и A1B1C1D1 которой – ромбы со стороной 2, причём DAB = 30o и AA1 = BB1 = CC1 = DD1 = 1 . Если DF – высота ромба ABCD , опущенная на сторону AB , то по теореме о трёх перпендикулярах D1F AB , поэтому DFD1 – линейный угол двугранного угла между плоскостями основания ABCD и диагонального сечения AD1C1B . Так как DF = AD sin 30o = 1 , то tg DFD1 = = 1 . Поэтому DFD1 = 45o < 60o . Значит, данная в условии секущая плоскость пересекает рёбра A1D1 и B1C1 . Обозначим через M и N соответствующие точки пересечения. Поскольку плоскости оснований параллелепипеда параллельны, а также параллельны плоскости противоположных боковых граней, то четырёхугольник AMNB – параллелограмм. Пусть MP – перпендикуляр, опущенный из точки M на плоскость основания ABCD . Поскольку плоскости AA1D1D и ABCD перпендикулярны, точка P лежит на их прямой пересечения AD . Если MQ – высота параллелограмма AMNB , опущенная на сторону AB , то по теореме о трёх перпендикулярах PQ AB , поэтому MQP – линейный угол двугранного угла между плоскостями AMNB и ABCD . По условию задачи MQP = 60o . Значит,
MQ = = = .
Следовательно,
SAMNB = AB· MQ = 2· = .
Объяснение: