М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ulianiabelka
ulianiabelka
29.06.2020 14:55 •  Геометрия

Это правильно треугольника со сторонами 1 2 4 существует

👇
Ответ:
soldiertoy01
soldiertoy01
29.06.2020
1. Нет, потому что сумма двух любых сторон треугольника должна быть больше третьей. В данном случае если сложить 1 и 2, то это будет меньше оставшейся стороны 4.
4,7(10 оценок)
Открыть все ответы
Ответ:
firuzakushmano
firuzakushmano
29.06.2020

1) Б

2) Б

3) А

4)В

5) Г

6) А

7)Пусть боковая сторона = 5х, тогда основание =2х

Так как треугольник равнобедренный, значит вторая боковая сторона тоже = 5х

Отсюда периметр Р=5х + 2х + 5х=48

Решаем уравнение 5х + 2х + 5х = 48

12х = 48

х= 4

Основание = 2х = 2*4 = 8

Боковая сторона = 5х = 5*4 = 20

8)Т.к. ΔADC = ΔA1D1C1, то АС = А1С1, AD = А1D1, ∠A = А1 АВ = AD + DB, A1B1 = A1D1 + D1B1, т.к. АВ = А1В1, DB = D1B1, то AD = A1D1

В ΔАВС и ΔА1В1С1:

∠А = ∠А1 АС = А1С1, т.к. ΔADC = ΔA1D1C1, АВ = А1В1, следовательно, ΔАВС = ΔА1В1С1 по 1-му признаку равенства треугольников.

4,5(62 оценок)
Ответ:
rootme
rootme
29.06.2020

Решение

Пусть ABCDA1B1C1D1 – данная призма, основания ABCD и A1B1C1D1 которой – ромбы со стороной 2, причём  DAB = 30o и AA1 = BB1 = CC1 = DD1 = 1 . Если DF – высота ромба ABCD , опущенная на сторону AB , то по теореме о трёх перпендикулярах D1F  AB , поэтому DFD1 – линейный угол двугранного угла между плоскостями основания ABCD и диагонального сечения AD1C1B . Так как DF = AD sin 30o = 1 , то tg  DFD1 =  = 1 . Поэтому  DFD1 = 45o < 60o . Значит, данная в условии секущая плоскость пересекает рёбра A1D1 и B1C1 . Обозначим через M и N соответствующие точки пересечения. Поскольку плоскости оснований параллелепипеда параллельны, а также параллельны плоскости противоположных боковых граней, то четырёхугольник AMNB – параллелограмм. Пусть MP – перпендикуляр, опущенный из точки M на плоскость основания ABCD . Поскольку плоскости AA1D1D и ABCD перпендикулярны, точка P лежит на их прямой пересечения AD . Если MQ – высота параллелограмма AMNB , опущенная на сторону AB , то по теореме о трёх перпендикулярах PQ  AB , поэтому MQP – линейный угол двугранного угла между плоскостями AMNB и ABCD . По условию задачи  MQP = 60o . Значит,

MQ =  =  = .

Следовательно,

SAMNB = AB· MQ = 2·  = .

Объяснение:

4,6(27 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ