угол а= 60°
Угол b =50°
Угол с =70°
Объяснение:
Дано: треугольник аbс, аb>bc>ас, угол 1= 60°,угол 2= 50°
Мы не знаем, какой угол а, какой b, поэтому обозначим их цифрами.
Найти: угол а, угол b, угол с.
1) Так как это треугольник сумма его углов равна 180°. угол а+угол b+ угол с =180°.
2) Из этого, угол 3= 180°-(50°+60°)=70°.
3) По теореме о соотношениях между сторонами и углами в треугольнике напротив бОльшей стороны лежит бОльший угол. БОльшая - аb. Значит угол с - самый большой, равен 70°.
4) По теореме о соотношениях между сторонами и углами в треугольнике напротив меньшей стороны лежит меньший угол. Меньшая сторона - ас, значит меньший угол-b.равен 50°.
5) Следовательно угол а= 60°.
Их высота - это апофема А.
Она равна 1*cos 30° = √3/2.
Проведём осевое сечение перпендикулярно рёбрам основания ВС и АД.
В сечении имеем равнобедренный треугольник с боковыми сторонами по (√3/2) и с основанием, равным диагонали d основания пирамиды.
d = a√2 = 1*√2 = √2.
По теореме косинусов:
cos M = ((√3/2)² + (√3/2)² - (√2)²)/(2*(√3/2)*(√3/2)) = 1/3.
Угол М (а он и есть искомый угол плоскостями MAD и MBC) равен:
<M = arc cos(1/3) = 1,230959 радиан = 70,52878°.