DC=6
Объяснение:
1. рассмотрим треугольник ADC, прямоугольный с углами 60 град. и 90 град., т.к. сумма углов в прямоуг. треуг. 180 град., то оставшийся угол равен 30 град.
2. есть теорема, что катет лежащий против угла в 30 град. равен 1\2 гипотенузы, соответственно если этот катет (BD) равен 2 по условию, то гипотенуза АВ в треугольнике АDC равна 4
3. рассмотрим треугольник АВС: в нем угол С равен 30 град (см. п. 1), катет АВ, лежащий против этого угла равен 4, значит (см. п.2) гипотенуза ВС равна 8
4. Т.к. ВС=8, ВD=2, то DС=8-2=6
Дано: Обозначим точками: Пусть Диаметр АВ, хорда АС. Центр окружности О.
Найти: угол А.
Решение: 1) Дополнительное построение: проводим отрезок соединяющий центр окружности(О) и второй конец хорды(С). Получившийся треугольник АСО равностороний(т.к. все стороны равны радиусу), значит каждый угол равен 60°.
Тогда и угол А равен 60°.Его и требовалось найти.
ответ: 60°.