Вариант решения. Чтобы ответить на вопрос задачи, нужно найти высоту параллелепипеда. Известно, что квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. В1Д=d d²=а²+b²+с² 25*26=20²+15²+c² 650-825=с² с=√25=5 Площадь боковой поверхности параллелепипеда равна сумме площадей его боковых граней или произведению высоты на периметр основания: Ѕ бок=5*2(20+15)=350 (ед. площади) Зная высоту В1Н треугольника АВ₁С, можно найти площадь сечения, не используя формулу Герона. Для этого найдем квадрат длин сторон АВ₁ и СВ₁. АВ₁²=АВ²+ВВ₁²=225+25=250 СВ₁²=ВС²+ВВ₁²=400+25=425 Пусть АН=х.Тогда НС=25-х Выразим квадрат высоты В₁Н из прямоугольных треугольников АНВ1 и СНВ₁ В₁Н²=АВ1²-АН² В₁Н²=СВ1²-НС² Приравняем правые части равенств:АВ₁²-АН²=СВ₁²-НС² 250-х²=425-625+50х-х² 50х=450 х=9 Тогда В₁Н=√(250-81)=√169=13 Ѕ АСВ₁=АС*В₁Н:2 ЅАСВ₁=25*13:2=162,5 (ед. площади)
пары коллинеарных векторов
а {2;0} и c {-5;0}
b {0;3} и d {0;-18}