Точка пересечения серединных перпендикуляров треугольника является центром окружности, описанной около этого треугольника. Так как данный треугольник — равнобедренный, то по теореме о медиане равнобедренного треугольника медиана, биссектриса и высота треугольника, проведенные к основанию, совпадают. Значит, высота совпадает с серединным перпендикуляром, проведенным к основанию треугольника. Следовательно, центр окружности, описанной около равнобедренного треугольника, лежит на медиане, проведенной к основанию.
обозначим А - (см) - катет 1, против известного угла Б - (см) - катет 2, соприкасается с известным углом С - (см) - гипотенуза
1) Определить значение тангенса угла ТАН (известный угол)
2) Определить длину неизвестного катета через тангенс ТАН (известный угол) = А / Б - если известен катет (А) лежащий против известного угла, то находишь катет Б Б = А / ТАН (известный угол) - если известен прилежащий катет (Б) к известному углу, то находишь катет А А = Б * ТАН (известный угол)
3) Определить по теореме Пифагора длину гипотенузы (С) - С^2 = А^2 + Б^2, откуда С = корень квадратный из ( А^2 + Б^2)
4) Определить ПЕРИМЕТР = А+Б+С (см)
5) Определить ПЛОЩАДЬ треугольника равную половине произведения его катетов. т. е. S = ( 1/2 х А х Б ) (кв. см)
Точка пересечения серединных перпендикуляров треугольника является центром окружности, описанной около этого треугольника. Так как данный треугольник — равнобедренный, то по теореме о медиане равнобедренного треугольника медиана, биссектриса и высота треугольника, проведенные к основанию, совпадают. Значит, высота совпадает с серединным перпендикуляром, проведенным к основанию треугольника. Следовательно, центр окружности, описанной около равнобедренного треугольника, лежит на медиане, проведенной к основанию.
Объяснение: