1) Прямая ОА пересекает окружность в двух точках, так как прямая бесконечна. Луч ОА пересекает окружность в одной точке, так как луч бесконечен в сторону точки А. Отрезок ОА не пересекает окружность, так как находится внутри нее.
2) Представим, что из точки на окружности К проведен радиус КОВ и хорда КС, равная радиусу. Проведем отрезок СО, который будет тоже являться радиусом окружности, и получим равносторонний треугольник КОС, в котором все стороны равны радиусу окружности. Все угла в равностороннем треугольнике равны 180/3=60 градусов.
Объяснение:
1) Прямая ОА пересекает окружность в двух точках, так как прямая бесконечна. Луч ОА пересекает окружность в одной точке, так как луч бесконечен в сторону точки А. Отрезок ОА не пересекает окружность, так как находится внутри нее.
2) Представим, что из точки на окружности К проведен радиус КОВ и хорда КС, равная радиусу. Проведем отрезок СО, который будет тоже являться радиусом окружности, и получим равносторонний треугольник КОС, в котором все стороны равны радиусу окружности. Все угла в равностороннем треугольнике равны 180/3=60 градусов.
Объяснение:
Есть теорема: "Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость". Отрезок CD имеет общую точку C с плоскостью АВС и общую точку D с плоскостью ABD. Через две точки можно провести только одну прямую, следовательно, прямая, содержащая отрезок СD, пересекает плоскость, содержащую треугольник АВС и плоскость, содержващую треугольник ABD. Значит любая прямая, параллельная СD, по приведенной теореме, также пересечет и плоскость АВС и плолскость ABD. Что и требовалось доказать.