М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
FaceSwapLive
FaceSwapLive
01.12.2020 04:30 •  Геометрия

Высота bm проведённая из вершины угла ромба abcd образует со стороной ab угол 30 градусов. am равно 6 см. найти длину диагонали bd если точка m лежит на стороне ad

👇
Ответ:
angelina436
angelina436
01.12.2020
Дано bm высота
Угол abm 30 градусов
Am 6 сантиметров
Найти:
Bd
Решение:
Т.к. треугольник abm прямоугольный то ab будет 12см ( на против угла в 30 гр. Лежит угол равный половине гипотенузы) т.к.abcd ромб ab=ad =12см.
12-6=6см
Угол b= 180-30=120
120÷2=60 (bd биссектриса)
60-30=30=> bd =12си
4,4(82 оценок)
Открыть все ответы
Ответ:
tereshkova11
tereshkova11
01.12.2020

Объяснение:

1. Средняя линия треугольника парраллельна стороне и равна его половине, 

Тогда если средние линии треугольника относятся как 2:2:4, то стороны относятся как 4:4:8 

4х+4х+8х=45 

16х=45

х = 45/16

4х = 45/16*4 = 45/4 = 11,25 

8х = 11,25*2 = 22,5

ответ: 11,25 см, 11,25 см,   22,5 см

2. Назовём медиану, проведённую из точки B, BD.

Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1

Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.

Рассмотрим ΔABC и ΔEBF

1) ∠B - общий

2) ∠BAC = ∠BEF - из решения

Отсюда следует, что эти треугольники подобны.

Коэффициент подобия будет равен отношению BD и BO

k = BD : BO = 3x : 2x = 3 : 2

Из подобия AC : EF = 3 : 2

15 : EF = 3 : 2

3EF = 30

EF = 10 см

ответ: 10 см

3. Учитывая, что согласно теореме Пифагора сумма квадратов катетов равна квадрату  гипотенузы, вычисляем длину гипотенузы АВ прямоугольного треугольника АВС:

АВ^2 = АС^2 + ВС^2

АВ - √АС^2 + ВСАС^2 = √5^2 + (5√3)^2 = √25 + 25 х 3 = √100 = 10 сантиметров.

Отношение катета АС к гипотенузе АВ является синусом угла АВС.

Синус угла АВС = АС/АВ = 5 : 10 = 1/2.

Угол АВС = 30°.

ответ: длина гипотенузы АВ равна 10 сантиметров, угол АВС = 30°.

4. Так как ВН высота треугольника АВС, то треугольники АВН и ВСН прямоугольные.

В прямоугольном треугольнике ВСН определим величину катета ВН через гипотенузу и противолежащий ВН угол.

Sinβ = ВН / ВС.

ВН = ВС * Sinβ = 7 * Sinβ см.

В прямоугольном треугольнике АВН выразим величину катета АН через катет ВН и угол ВАН.

tgα = BH /AH.

AH = BH / tgα = 7 * Sinβ / tgα см.

ответ: Длина отрезка АН равна 7 * Sinβ / tgα см.

5. Рассмотрим треугольник АКД, у которого, по условию, точка В середина отрезка АК, то есть АВ = ВК и так как ВС параллельна АД, как основания трапеции, тогда отрезок ВС является средней линией треугольника.

Длина средней линии треугольника равна половине длины параллельной ей стороны.

ВС = АД / 2 = 12/2 = 6 см.

Так как средняя линия треугольника совпадает с малым основанием трапеции, то сумма сторон трапеции будет равна 12 + 6 = 18 см.

ответ: Сумма оснований трапеции равна 18 см.

4,5(87 оценок)
Ответ:
olavishneva
olavishneva
01.12.2020

Линия пересечения плоскости  AD₁C₁ и плоскости основания есть ребро параллелепипеда АВ.

Угол между плоскостью AD₁C₁ и плоскостью основания есть угол между плоскостью  AD₁C₁ перпендикуляром к АВ, то есть высотой ромба. На рисунке обозначена как ВН.

ΔСВН - прямоугольный, с прямым углом Н, по условию острый угол ромба-основания равен 60⁰, отсюда, зная sin60⁰ находим высоту ромба ВН:

 

а) sin60^0=\frac{\sqrt3}{2}\\\\sin60^0=\frac{BH}{BC}\\\\BH=BCsin60^0=\frac{a\sqrt3}{2}

Можно было вычислить и так, как мы находили АН во вчерашнем задании, через т. Пифагора, зная, что СН=а/2, как катет, лежащий против угла в 30⁰, но сегодня решаем так, чтобы показать разные пути решения.

 

 б) Высоту параллелепипеда HH₁находим из прямоугольного ΔВН₁Н в котором угол Н прямой, угол В=60⁰, и зная значение tg60⁰:

 

tg60^0=\sqrt3\\\\tg60^0=\frac{HH_1}{BH}\\\\HH_1=\sqrt{3}\cdot BH=\sqrt{3}\cdot\frac{a\sqrt3}{2}=1,5a

 

в) Найти площадь боковой поверхности - самая простая часть этого задания:

S_6_o_k=Ph, где P и h - периметр основания и высота пераллелепипеда соответственно.

S_6_o_k=4a\cdot1,5a=6a^2

 

 

г) S=S_6_o_k+2S_O_C_H=6a^2+2a\cdot\frac{a\sqrt{3}}{2}=6a^2+a^2\sqrt{3}=a^2(6+\sqrt{3})

4,8(47 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ