Выпишите номера неверных утверждений: 1)если точка с лежит на луче ав,то она лежит на луче ba 2)если точка с лежит на отрезке ав,то она лежит на луче ав 3)на прямой а точки f и e лежат по разные стороны от точки м. тогда fm> ef
1 3 не правильно. луч имеет начало но нет конца поэтому в первом А это точка. а в 3 если точки по разные стороны, явно расстояние между ними больше , чем любое расстояние до любой точки в этом отрезке
Мыс Челюскина, мыс Дежнева мыс в Анадырском заливе, Россия; мыс в Тауйской губе, Россия;
пролив между Новой Землей и полуостровом Таймыр носит имя Бориса Вилькицкого, острова в Карском море названы именами полярных исследователей Шокальского, Сибирякова, Неупокоева, Исаченко, Воронина… Среди морей, названных именами известных географов Баренца и Беринга, появилось на географических картах море Лаптевых, которого не существовало на старых, дореволюционных картах. Оно было названо в честь замечательных исследователей Арктики Харитона Прокофьевича и Дмитрия Яковлевича Лаптевых, принимавших участие в Великой Северной экспедиции XVIII века. Именем Дмитрия Лаптева назван и пролив, соединяющий море Лаптевых с Восточно-Сибирским морем, а берегом Харитона Лаптева назвали северо-западное побережье Таймырского полуострова - от Пясинского залива до залива Таймырского. г. Кропоткин (Краснодарский край) - П. А. Кропоткин (князь, русский географ и геолог) , г. Лазарев (Хабаровский край) - М. П. Лазарев (русский путешественник) , г. Макаров (Сахалинская обл. ) - С. О. Макаров (русский флотоводец, океанограф) , пос. Пояркова (Амурская обл. ) - В. Д. Поярков (русский землепроходец) , пос. Пржевальское (Смоленская обл. ) - Н. М. Пржевальский (русский путешественник) , г. Хабаровск, станция Ерофей Павлович (Амурская обл. ) - Ерофей Павлович Хабаров (русский землепроходец) , г. Шелехов (Шелихов) (Иркутская обл. ) - Г. И. Шелихов - русский путешественник;
Центр окружности, описанной вокруг треугольника, находится в точке пересечения срединных перпендикуляров. Центр окружности, вписанной в треугольник, находится в точке пересечения его биссектрис. Так как срединные перпендикуляры правильного треугольника - его высоты и биссектрисы, центры описанной и вписанной окружности совпадают. Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. Радиус вписанной равен половине радиуса описанной окружности, т.е. 1/3 высоты ( медианы, биссектрисы). Высота правильного треугольника равна (а√3):2, радиус вписанной окружности r=[(а√3):2]:3, где а - сторона треугольника. ⇒ r=[6√3•√3):2]:3=18:6=3 Площадь круга находят по формуле: S=π•r² S=π•3²=9π
а в 3 если точки по разные стороны, явно расстояние между ними больше , чем любое расстояние до любой точки в этом отрезке