Пусть продолжение AM за точку M пересекает BC (точнее, продолжение этого отрезка за точку С) в точке K. Тогда 1) Треугольник ABK - равнобедренный, так как ∠BKA = ∠KAD = ∠KAB; то есть BK = AB = 5; 2) AM = MK; тут можно сослаться на теорему Фалеса, а можно просто сказать, что ΔAMD = ΔKMC; поскольку есть пара равных сторон MD = MC и углы при равных сторонах тоже равны (из за параллельности оснований трапеции). То есть BM - медиана к основанию у равнобедренного треугольника ABK. Поэтому BM перпендикулярно AM, и BM = 3; (получился "египетский" треугольник).
ΔАВС: медиана АК (ВК=КС) и высота АН (<АКС прямой) делят угол А на три равные части: <CАН=<НАК=<КАВ Рассмотрим ΔАКС: - в нем АН - высота и биссектриса, значит этот треугольник равнобедренный (АК=АС). Тогда АН является и медианой (СН=КН=КС/2) Рассмотрим прямоугольный ΔАНВ: в нем АК является биссектрисой. По свойству биссектрисы АВ/ВК=АН/КН или АН/АВ=КН/ВК=КС/2КС=1/2 Т.к.. АН/АВ = sin B,sin B=1/2, значит <В=30° <НАВ=180-90-30=60° <НАК=<КАВ=<НАВ/2=60/2=30° <А=3*30°=90° <С=180-90-30=60° ответ: отношение 90°/30°=3