Если рассмотреть площади треугольников АВС и BCD, то нетрудно заметить: S(ABC) = S(ABP) + S(BPC) S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые))) т.е. доказав равенство площадей треугольников АВС и ВСD, мы докажем требуемое треугольники АВС и ВСD имеют общую сторону... если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))), то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции))) значит и площади равны...
Модуль, это длина вектора. СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго. РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). Исходя из этого: 1) |AB+BC|=|AC|, то есть |AB+BC|= а. 2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3. |AB+AC|=а*√3. 3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1. |AB+CB|=а*√3. 4) |ВА-ВC|=|CA|=а. 5) |АВ-АC|=|CВ|=а.
Значит 10/4*3=7,5 - это одна сторона.
Sкв.=a^2=7.5^2=56.25см
Напиши если я неверно сделал