такого треугольника не существует
или 60 см^2.
Объяснение:
Треугольника с заданными сторонами не существует.
13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.
Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:
S = √p•(p-a)•(p-b)•(p-c).
p = (10+13+13):2 = 18 (см),
S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)
Ещё одним может быть нахождение по формуле
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
(S = 1/2•10•12 = 60 (см^2) ).
б) точка принадлежит окружности, если при подстановке ее координат в уравнение окружности, получается верное числовое равенство.
А(2;2)
(2-2)²+(2+3)²=25
5²=25
25=25 => точка А принадлежит окружности
В(7;-3)
(7-2)²+(-3+3)²=25
5²+0²=25
25=25 => точка В принадлежит окружности
С (3;1)
(3-2)²+(1+3)²≠25
1²+4²≠25
17≠25 => точка С не принадлежит окружности
в) уравнение прямой, проходящей через 2 точки:
(х-х1) / (х2-х1) = (у-у1) / (у2-у1)
Пусть А(х1, у1) С(х2, у2)
А(2; 2) С(3; 1)
(х-2) / (3-2) = (у-2) / (1-2)
(х-2)/1=(у-2)/(-1)
х-2=2-у
АС: у=-х+4