Высота боковой грани МАВ - прямая МА, которая из тр-ка МАД равна: МА=√(МД²+АД²)=√(15²+10²)=√325=5√13 дм. Высота боковой грани МВС - прямая МС, которая из тр-ка МСД равна: МС=√(МД²+СД)=√(15²+20²=25 дм. Площадь ΔМАВ: S1=AB·MA/2=20·5√13/2=50√13 дм². Площадь ΔМВС: S2=ВС·МС/2=10·25/2=125 дм². Площадь двух граней, прилежащих к высоте МД: S3=(АД+СД)·МД/2=(10+20)·15/2=225 дм². Площадь основания: S4=АВ·АД=20·10=200 дм². Общая площадь - это сумма всех найденных площадей: S=50√13+125+225+200=50(1+11√13) дм³ - это ответ.
Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.