6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
Центр окружности, описанной около прямоугольника, - это точка пересечения его диагоналей, а радиус - половина диагонали.
Тогда диагональ:
d = 2R = 2 · 7,5 = 15 см.
Пусть х - одна часть, тогда стороны 3х и 4х.
Две смежные стороны и диагональ образуют прямоугольный треугольник. По теореме Пифагора:
d² = (3x)² + (4x)²
9x² + 16x² = 225
25x² = 225
x² = 9
x = 3 (x = - 3 не подходит по смыслу задачи)
3 · 3 = 9 см - одна сторона
3 · 4 = 12 см - другая сторона прямоугольника.
P = (9 + 12) · 2 = 21 · 2 = 42 см
вектор АД = (9-15;5-2) = (-6;3)
Если эти вектора взаимно перпендикулярны, то их скалярное произведение равно 0
2*(-6)+4*3 = -12+12 = 0
Хорошо :)
Проверим принадлежность точки С к прямоугольнику
Середина диагонали ВД
((17+9)/2;(6+5)/2) = (13;5,5)
Середина диагонали АС
((15+11)/2;(2+9)/2) = (13;5,5)
Совпало.
Площадь построенного на них параллелограммма равна произведению модулей векторов, т.к. они перпендикулярны
|АВ|=√(2^2+4^2)=√20 = 2√5
|АД|=√(6^2+3^2)=√45 = 3√5
S=|АВ|*|АД|=30